Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Aug 27 2014 10:42:19
%S 5,101,1020101,53,29,2507707213238852620996901,449,13,8693,1997,6029,
%T 61,3181837,113,181,1934689,
%U 6143090225314378441493352126119201470973493456817556328833988172277,4733,3617,41,68141,37,51473,17,821,598201519454797,157,9689,2357,757,149,293,5261
%N a(1)=5, a(n) is the smallest prime dividing 4*Q^2 + 1 where Q is the product of all previous terms in the sequence.
%C Removed redundant mod(p,4) = 1 criterion from definition. By quadratic reciprocity, all factors of 1 + 4Q^2 are congruent to 1 (mod 4). See comments at the end of the b-file for an additional eight terms not proved, but nevertheless highly likely to be correct. - _Daran Gill_, Mar 23 2013
%D P. G. L. Dirichlet (1871): Vorlesungen über Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
%H Daran Gill, <a href="/A057207/b057207.txt">Table of n, a(n) for n = 1..33</a>
%H Mersenne Forum, <a href="http://mersenneforum.org/showthread.php?t=17990">Sequence A057207</a>
%H OEIS wiki, <a href="https://oeis.org/wiki/OEIS_sequences_needing_factors">OEIS sequences needing factors</a>
%e a(4)=53 is the smallest prime divisor of 4*(5.101.1020101)^2+1 = 1061522231810040101 = 53*1613*12417062216309.
%t t = {5}; Do[q = Times @@ t; AppendTo[t, FactorInteger[1 + 4*q^2][[1, 1]]], {6}]; t (* _T. D. Noe_, Mar 27 2013 *)
%Y Cf. A000945, A000946, A005265, A005266, A051308-A051335, A002144, A057204-A057208.
%K nonn
%O 1,1
%A _Labos Elemer_, Oct 09 2000
%E Eight more terms, a(9)-a(16), from _Max Alekseyev_, Apr 27 2009
%E Seventeen more terms, a(17)-a(33), added by _Daran Gill_, Mar 23 2013