login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Occurrences of most frequently occurring number in 1-to-n multiplication table.
8

%I #17 Mar 29 2022 12:26:24

%S 1,2,2,3,3,4,4,4,4,4,4,6,6,6,6,6,6,7,7,8,8,8,8,8,8,8,8,8,8,10,10,10,

%T 10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,

%U 12,12,12,12,14,14,14,14,14,14,14,14,14,14,14,14,16,16,16,16,16,16,16,16

%N Occurrences of most frequently occurring number in 1-to-n multiplication table.

%H Branden Aldridge, <a href="/A057142/b057142.txt">Table of n, a(n) for n = 1..20000</a> (terms 1..1000 from Reinhard Zumkeller, terms 1001..10000 from Reinhard Zumkeller and Charles R Greathouse IV).

%e M(n) is the array in which m(x,y)= x*y for x = 1 to n and y = 1 to n. In m(5), the most frequently occurring number is 4. It occurs 3 times, so a(5) = 3.

%o (Haskell)

%o import Data.List (group, sort)

%o a057142 n = head $ reverse $ sort $ map length $ group $

%o sort [u * v | u <- [1..n], v <- [1..n]]

%o -- _Reinhard Zumkeller_, Jun 22 2013

%o (PARI) T(n,f=factor(n))=my(k=#f~); f[,1]=primes(k+1)[2..k+1]~; f[1,1]=6; factorback(f)

%o listA025487(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p))|p<-partitions(n)],[1,2])))))

%o ct(n,k)=sumdiv(n,d,max(d,n/d)<=k)

%o a(n)=if(n==1, return(1)); my(v=listA025487(n^2),r,t); for(i=1,#v, t=ct(v[i],n); if(t>r, r=t)); r \\ _Charles R Greathouse IV_, Feb 05 2022

%Y Cf. A057143, A057144, A057338.

%K nonn

%O 1,2

%A _Arran Fernandez_, Aug 13 2000

%E More terms from Larry Reeves (larryr(AT)acm.org), Apr 18 2001