login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Scaled Chebyshev U-polynomials evaluated at sqrt(10)/2.
12

%I #35 Dec 30 2023 23:50:49

%S 1,10,90,800,7100,63000,559000,4960000,44010000,390500000,3464900000,

%T 30744000000,272791000000,2420470000000,21476790000000,

%U 190563200000000,1690864100000000,15003009000000000,133121449000000000,1181184400000000000,10480629510000000000

%N Scaled Chebyshev U-polynomials evaluated at sqrt(10)/2.

%C This is the m=10 member of the m-family of sequences S(n,sqrt(m))*(sqrt(m))^n; for S(n,x) see Formula. The m=4..9 instances are A001787, A030191, A030192, A030240, A057084-5 and the m=1..3 signed sequences are A010892, A009545, A057083.

%C The characteristic roots are rp(m) := (m + sqrt(m*(m-4)))/2 and rm(m) := (m-sqrt(m*(m-4)))/2 and a(n,m)= (rp(m)^(n+1) - rm(m)^(n+1))/(rp(m) - rm(m)) is the Binet form of these m-sequences.

%H Colin Barker, <a href="/A057086/b057086.txt">Table of n, a(n) for n = 0..1000</a>

%H A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/5-5/horadam.pdf">Special properties of the sequence W_n(a,b; p,q)</a>, Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=10, q=-10.

%H Wolfdieter Lang, <a href="http://www.fq.math.ca/Scanned/38-5/lang.pdf">On polynomials related to powers of the generating function of Catalan's numbers</a>, Fib. Quart. 38 (2000) 408-419. Eqs.(38) and (45),lhs, m=10.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-10).

%F a(n) = 10*(a(n-1) - a(n-2)), a(-1)=0, a(0)=1.

%F a(n) = S(n, sqrt(10))*(sqrt(10))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.

%F a(2*k) = A057080(k)*10^k, a(2*k+1) = A001090(k)*10^(k+1).

%F G.f.: 1/(1-10*x+10*x^2).

%F a(n) = Sum_{k=0..n} A109466(n,k)*10^k. - _Philippe Deléham_, Oct 28 2008

%t Join[{a=1,b=10},Table[c=10*b-10*a;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 20 2011 *)

%o (Sage) [lucas_number1(n,10,10) for n in range(1, 20)] # _Zerinvary Lajos_, Apr 26 2009

%o (PARI) Vec(1/(1-10*x+10*x^2) + O(x^30)) \\ _Colin Barker_, Jun 14 2015

%o (Magma) [(10)^n*Evaluate(DicksonSecond(n, 1/10), 1): n in [0..30]]; # _G. C. Greubel_, May 02 2022

%Y Cf. A001090, A001787, A030191, A030192, A030240, A049310.

%Y Cf. A009545, A010892, A057080, A057083, A057084, A057085.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Aug 11 2000