Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Oct 18 2024 20:34:19
%S 2,11,119,1298,14159,154451,1684802,18378371,200477279,2186871698,
%T 23855111399,260219353691,2838557779202,30963916217531,
%U 337764520613639,3684445810532498,40191139395243839,438418087537149731,4782407823513403202,52168067971110285491,569066339858699737199
%N A Chebyshev or generalized Fibonacci sequence.
%C From _Klaus Purath_, Sep 25 2024: (Start)
%C a(n) = (t(i+3n) - t(i))/(t(i+2n) - t(i+n)) - 1 for n >= 1, where (t) is any sequence satisfying t(i) = 12t(i-1) - 12t(i-2) + t(i-3) or t(i) = 11t(i-1) - t(i-2) without regard to initial values and including this sequence itself, as long as t(i+2n) - t(i+n) != 0 for integer i.
%C a(n) = (t(i+3n) + t(i))/(t(i+2n) + t(i+n)) + 1 for i >= 0, n >= 1, where (t) is any sequence satisfying t(i) = 10t(i-1) + 10t(i-2) - t(i-3) or t(i) = 11t(i-1) - t(i-2) without regard to initial values and including this sequence itself, as long as t(i+2n) + t(i+n) != 0.
%C a(n) = (t(i-n) + t(i+n))/t(i) for i >= n >= 0, where (t) is any recurrence of the form (11,-1) including this sequence itself, as long as t(i) != 0.
%C a(n) = t(n) - t(n-1) = (t(n+1) - t(n-2))/12, where (t) is any third order recurrence with constant coefficients (12,-12,1) and initial values t(0) = x, t(1) = x + 2, t(2) = x + 13 for integer x.
%C a(n) = t(n-1) + t(n) = (t(n-2) + t(n+1))/10, where (t) is any third order recurrence with constant coefficients (10,10,-1) and initial values t(0) = x, t(1) = 2 - x, t(2) = x + 9 for integer x. (End)
%H Michael De Vlieger, <a href="/A057076/b057076.txt">Table of n, a(n) for n = 0..963</a>
%H Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Nemeth/nemeth7.html">Ellipse Chains and Associated Sequences</a>, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
%H P. Bhadouria, D. Jhala, and B. Singh, <a href="http://dx.doi.org/10.22436/jmcs.08.01.07">Binomial Transforms of the k-Lucas Sequences and its Properties</a>, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence R_3.
%H S. Falcon, <a href="http://dx.doi.org/10.4236/am.2014.515216">Relationships between Some k-Fibonacci Sequences</a>, Applied Mathematics 5 (2014), 2226-2234.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-1).
%F a(n) = S(n, 11) - S(n-2, 11) = 2*T(n, 11/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 11)=A004190(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
%F G.f.: (2-11*x)/(1-11*x+x^2).
%F a(n) = ap^n + am^n, with ap := (11+sqrt(117))/2 and am := (11-sqrt(117))/2.
%F a(n) = sqrt(4+117*A004190(n-1)^2), n>=1.
%F a(n) = a(-n). - _Michael Somos_, Apr 25 2003
%F E.g.f.: 2*exp(11*x/2)*cosh(3*sqrt(13)*x/2). - _Stefano Spezia_, Aug 07 2024
%F From _Klaus Purath_, Sep 25 2024: (Start)
%F a(n) = (a(n-1)*a(n-2) + 1287)/a(n-3) for integer n.
%F a(n+1)^2 - a(n)*a(n+2) = -117 for integer n. (End)
%e G.f. = 2 + 11*x +119*x^2 + 1298*x^3 + 14159*x^4 + 154451*x^5 + ...
%t a[0] = 2; a[1] = 11; a[n_] := 11a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* _Robert G. Wilson v_, Jan 30 2004 *)
%t a[ n_] := 2 ChebyshevT[ n, 11/2]; (* _Michael Somos_, May 28 2014 *)
%t LinearRecurrence[{11,-1},{2,11},30] (* _Harvey P. Dale_, Sep 13 2024 *)
%o (PARI) {a(n) = subst( poltchebi(n), x, 11/2) * 2};
%o (PARI) {a(n) = 2 * poltchebyshev(n, 1, 11/2)}; /* _Michael Somos_, May 28 2014 */
%o (PARI) Vec((2-11*x)/(1-11*x+x^2) + O(x^40)) \\ _Michel Marcus_, Feb 18 2016
%o (Sage) [lucas_number2(n,11,1) for n in range(27)] # _Zerinvary Lajos_, Jun 25 2008
%Y Cf. A004190, A049310, A053120.
%K nonn,easy
%O 0,1
%A _Wolfdieter Lang_, Oct 31 2002