login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057035
Numbers n such that n = p + q with n*p*q = primorial number (A002110) (p <= q, p > 0, q > 0).
1
2, 3, 5, 6, 10, 15, 21, 22, 35, 55, 182, 221, 231, 357, 442, 715, 1105, 1430, 2958, 23345, 106981, 144210, 219965, 226083, 496961
OFFSET
1,1
COMMENTS
No further terms with n*p*q <= A002110(18). - Robert Israel, Aug 07 2017
EXAMPLE
2 = 1 + 1 -> 2*1*1 = 2;
715 = 1 + 714 -> 715*714*1 = 510510 = 17*13*11*7*5*3*2;
1105 = 231 + 874 -> 1105*231*874 = 223092870 = 23*19*...*2;
496961 = 495726 + 1235 -> (17*23*31*41)*(2*3*7*11*29*37)*(5*13*19) = 41*37*...*2.
MAPLE
R:= 2:
for m from 1 to 13 do
P:= {seq(ithprime(i), i=1..m)}:
C:= combinat:-powerset(P) minus {{}, P};
for s3 in C do
z:= convert(s3, `*`);
C3:= P minus s3;
zp:= convert(C3, `*`);
if 4*zp > z^2 then next fi;
for s1 in combinat:-powerset(C3 minus {max(C3)}) do
x:= convert(s1, `*`);
y:= zp/x;
if x + y = z then
R:= R, z;
fi
od
od
od:
sort(convert({R}, list)); # Robert Israel, Aug 07 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Naohiro Nomoto, Sep 10 2000
EXTENSIONS
5 more terms from Carlos Rivera, Nov 22 2000
STATUS
approved