login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor((sum of divisors of n) / (number of divisors of n)), or floor(sigma_1(n)/sigma_0(n)).
6

%I #28 Dec 25 2016 02:14:41

%S 1,1,2,2,3,3,4,3,4,4,6,4,7,6,6,6,9,6,10,7,8,9,12,7,10,10,10,9,15,9,16,

%T 10,12,13,12,10,19,15,14,11,21,12,22,14,13,18,24,12,19,15,18,16,27,15,

%U 18,15,20,22,30,14,31,24,17,18,21,18,34,21,24,18

%N a(n) = floor((sum of divisors of n) / (number of divisors of n)), or floor(sigma_1(n)/sigma_0(n)).

%C Floor of mean of divisors of n. - _Jon E. Schoenfield_, Dec 24 2016

%H Reinhard Zumkeller, <a href="/A057022/b057022.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = (A000203(n) - A054025(n))/A000005(n).

%e a(4)=2 since the 3 divisors of 4 are 1, 2 and 4 and floor((1 + 2 + 4)/3) = floor(7/3) = 2.

%t Floor[Table[Total[Divisors[n]]/Length[Divisors[n]],{n,20}]] (* _Daniel Jolly_, Nov 15 2014 *)

%t Table[Floor[DivisorSigma[1,n]/DivisorSigma[0,n]],{n,70}] (* _Harvey P. Dale_, Jan 14 2015 *)

%o (Haskell)

%o a057022 n = a000203 n `div` a000005 n

%o -- _Reinhard Zumkeller_, Jan 06 2012

%o (PARI) a(n) = sigma(n)\numdiv(n); \\ _Michel Marcus_, Nov 15 2014

%Y Cf. A000005, A000203, A009205, A054025, A057020, A057021.

%Y Cf. A003601.

%K nonn

%O 1,3

%A _Henry Bottomley_, Jul 21 2000