%I #13 Dec 01 2019 11:47:43
%S 479,599,1367,2887,3851,4787,5023,5503,5843,7187,7283,7307,7411,8011,
%T 8179,9227,9923,10099,11059,11131,11243,11867,12211,12379,12451,12979,
%U 14011,14923,15619,17483,18211,19267,19699,19891,20347,21107,21323
%N Discriminants of imaginary quadratic fields with class number 25 (negated).
%C Sequence contains 95 members; largest is 93307.
%C The class group of Q[sqrt(-d)] is isomorphic to C_5 X C_5 for d = 12451 and 37363. For all other d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_25. - _Jianing Song_, Dec 01 2019
%H Jianing Song, <a href="/A056987/b056987.txt">Table of n, a(n) for n = 1..95</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ClassNumber.html">Class Number.</a>
%t Reap[ For[n = 1, n < 22000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 25, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 05 2012 *)
%Y Cf. A014602, A014603, A006203, A013658, A046002, A046003, A046004, A046005, A046006, A046007, A046008, A046009, A046010, A046011, A046012, A046013, A046014, A046015, A046016, A123563, A046018, A171724, A046020, A048925.
%K nonn,fini,full
%O 1,1
%A _Eric W. Weisstein_