login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p which divide Sum_{i=1..m} i! for some m (see A125138).
4

%I #10 Mar 26 2024 05:54:11

%S 3,11,17,23,29,37,41,43,53,67,73,79,97,101,107,109,127,131,139,149,

%T 151,157,163,173,191,199,211,229,239,251,257,263,271,281,283,293,307,

%U 311,313,331,337,347,349,359,373,379,383,389,397,409,421,433,443,449

%N Primes p which divide Sum_{i=1..m} i! for some m (see A125138).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Smarandache-WagstaffFunction.html">Smarandache-Wagstaff Function.</a>

%p isA056983 := proc(p)

%p local idxp ;

%p if not isprime(p) then

%p return false ;

%p end if;

%p idxp := numtheory[pi](p) ;

%p if A125138(idxp) > 0 then

%p true ;

%p else

%p false ;

%p end if;

%p end proc:

%p A056983 := proc(n)

%p option remember ;

%p local p;

%p if n = 1 then

%p 3;

%p else

%p p := procname(n-1) ;

%p while true do

%p p := nextprime(p) ;

%p if isA056983(p) then

%p return p;

%p end if;

%p end do:

%p end if;

%p end proc:

%p seq(A056983(n),n=1..70) ; # _R. J. Mathar_, Mar 26 2024

%Y Cf. A007489, A056984, A056985, A125138.

%K nonn

%O 1,1

%A _Eric W. Weisstein_