login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers > 1 whose prime divisors are all Mersenne primes (i.e., of the form (2^p - 1)).
8

%I #26 Sep 28 2020 01:03:51

%S 3,7,9,21,27,31,49,63,81,93,127,147,189,217,243,279,343,381,441,567,

%T 651,729,837,889,961,1029,1143,1323,1519,1701,1953,2187,2401,2511,

%U 2667,2883,3087,3429,3937,3969,4557,5103,5859,6223,6561,6727,7203,7533,8001,8191,8649,9261

%N Integers > 1 whose prime divisors are all Mersenne primes (i.e., of the form (2^p - 1)).

%H Amiram Eldar, <a href="/A056652/b056652.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..471 from Michael De Vlieger)

%F Sum_{n>=1} 1/a(n) = - 1 + Product_{p in A000668} p/(p-1) = 0.82292512097260346512... - _Amiram Eldar_, Sep 27 2020

%e 63 is included because the prime factorization of 63 is 3^2 * 7 = (2^2 -1)^2 *(2^3 -1).

%p isA000668 := proc(n)

%p if n in [ 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727] then

%p true;

%p else

%p false;

%p end if;

%p end proc:

%p isA056652 := proc(n)

%p local p;

%p for p in numtheory[factorset](n) do

%p if not isA000668(p) then

%p return false;

%p end if;

%p end do:

%p true ;

%p end proc:

%p for n from 2 to 1000 do

%p if isA056652(n) then

%p printf("%d,",n);

%p end if;

%p end do: # _R. J. Mathar_, Feb 19 2017

%t Block[{nn = 10^4, s}, s = TakeWhile[Select[2^Prime@ Range@ 8 - 1, PrimeQ], # <= nn &]; Select[Range@ nn, AllTrue[FactorInteger[#][[All, 1]], MemberQ[s, #] &] &]] (* _Michael De Vlieger_, Sep 03 2017 *)

%o (PARI) isok(n) = {if (n==1, return (0)); my(f = factor(n)); for (k=1, #f~, if (! ((q=ispower(f[k, 1]+1,,&e)) && isprime(q) && (e==2)), return(0));); 1;} \\ _Michel Marcus_, Apr 25 2016

%Y Cf. A000668, A046528.

%K nonn

%O 1,1

%A _Leroy Quet_, Aug 09 2000

%E Offset corrected and more terms added by _Michel Marcus_, Apr 25 2016