login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of binomial(2*n,n) / (2*n+1).
3

%I #36 Aug 15 2024 06:41:41

%S 1,3,5,7,9,11,13,5,17,19,21,23,25,27,29,31,11,7,37,13,41,43,3,47,49,

%T 17,53,55,57,59,61,9,65,67,23,71,73,75,11,79,81,83,17,29,89,13,31,19,

%U 97,11,101,103,35,107,109,37,113,115,39,119,121,41,125

%N Denominator of binomial(2*n,n) / (2*n+1).

%C The numerators are given in A056616.

%H Michel Marcus, <a href="/A056617/b056617.txt">Table of n, a(n) for n = 0..2000</a>

%F a(n) = denominator(r(n)) with r(n) = binomial(2*n,n)/(2*n+1).

%F G.f. of r(n): 1/(2*sqrt(x))*arcsin(2*sqrt(x)). [_Vladimir Kruchinin_, May 31 2013]

%e The rationals r(n) begin: 1, 2/3, 6/5, 20/7, 70/9, 252/11, 924/13, 1144/5, 12870/17, ...

%t Table[Binomial[2 n, n]/(2 n + 1), {n, 0, 70}]//Denominator (* _Harvey P. Dale_, May 01 2019 *)

%o (Magma) [Denominator((Binomial (2*n, n)) / (2*n + 1)): n in [0..70]]; // _Vincenzo Librandi_, May 27 2019

%o (PARI) a(n) = denominator(binomial(2*n,n) / (2*n+1)); \\ _Michel Marcus_, May 27 2019

%Y Cf. A056616, A000108.

%K nonn,easy,frac

%O 0,2

%A _N. J. A. Sloane_, Aug 28 2000