This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056594 Periodic sequence 1,0,-1,0,...; expansion of 1/(1 + x^2). 91

%I

%S 1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,

%T -1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,

%U 1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0

%N Periodic sequence 1,0,-1,0,...; expansion of 1/(1 + x^2).

%C G.f. is inverse of cyclotomic(4,x). Unsigned: A000035(n+1).

%C Real part of i^n and imaginary part of i^(n+1), i=sqrt(-1). - _Reinhard Zumkeller_, Jul 22 2007

%C The BINOMIAL transform generates A009116(n); the inverse BINOMIAL transform generates (-1)^n*A009116(n). - _R. J. Mathar_, Apr 07 2008

%C a(n-1), n >= 1, is the nontrivial Dirichlet character modulo 4, called Chi_2(4;n) (the trivial one is Chi_1(4;n) given by periodic(1,0) = A000035(n)). See the Apostol reference, p. 139, the k = 4, phi(k) = 2 table. - _Wolfdieter Lang_, Jun 21 2011

%C a(n-1), n >= 1, is the character of the Dirichlet beta function. - _Daniel Forgues_, Sep 15 2012

%C a(n-1), n >= 1, is also the (strongly) multiplicative function h(n) of Theorem 5.12, p. 150, of the Niven-Zuckerman reference. See the formula section. This function h(n) can be employed to count the integer solutions to n = x^2 + y^2. See A002654 for a comment with the formula. - _Wolfdieter Lang_, Apr 19 2013

%C This sequence is duplicated in A101455 but with offset 1. - _Gary Detlefs_, Oct 04 2013

%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986.

%D I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981.

%D Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, New York: John Wiley (1980), p. 150.

%H Vincenzo Librandi, <a href="/A056594/b056594.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KroneckerSymbol.html">Kronecker Symbol.</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet_beta_function">Dirichlet beta function</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Kronecker_symbol">Kronecker Symbol.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0, -1).

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Pol#poly_cyclo_inv">Index to sequences related to inverse of cyclotomic polynomials</a>

%F G.f.: 1/(1+x^2).

%F E.g.f.: cos(x).

%F a(n) = (1/2)*((-i)^n + i^n), where i = sqrt(-1). - _Mitch Harris_, Apr 19 2005

%F a(n) = (1/2)*((-1)^(n+floor(n/2)) + (-1)^floor(n/2)).

%F Recurrence: a(n)=a(n-4), a(0)=1, a(1)=0, a(2)=-1, a(3)=0.

%F Also a(n) = -a(n-2) for n>1; a(n) = A010892(A001651(n+1)); a(n) = (-(n mod 4)-(n+1 mod 4)+(n+2 mod 4)+(n+3 mod 4))/4 (cf. forms of modular arithmetic of _Paolo P. Lava_, see A146094). [_Bruno Berselli_, Feb 08 2011]

%F a(n) = cos(n*Pi/2), with n>=0. - _Paolo P. Lava_, Aug 02 2006

%F a(n) = T(n, 0) = A053120(n, 0); T(n, x) Chebyshev polynomials of the first kind. - _Wolfdieter Lang_, Aug 21 2009

%F a(n) = S(n, 0)= A049310(n, 0); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind.

%F Sum_{k>=0} a(k)/(k+1) = Pi/4. - _Jaume Oliver Lafont_, Mar 30 2010

%F a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*(-1)^k. - _Philippe Deléham_, Feb 10 2012

%F a(n) = (1/2)*(1+(-1)^n)*(-1)^(n/2). [_Bruno Berselli_, Mar 13 2012]

%F a(0) = 1, a(n-1) = 0 if n is even, a(n-1) = product((-1)^(e_j*(p_j-1)/2), j = 1..m) if the odd n-1 = p_1^(e_1)*p_2^(e_2)* ...*p_m^(e_m) with distinct odd primes p_j, j=1..m. See the function h(n) of Theorem 5.12 of the Niven-Zuckerman reference. - _Wolfdieter Lang_, Apr 19 2013

%F a(n) = (-4/(n+1)), n >= 0, where (k/n) is the Kronecker symbol. See the Eric Weisstein and Wikipedia links. Thanks to Wesley Ivan Hurt. - _Wolfdieter Lang_, May 31 2013

%F a(n) = R(n,0)/2 with the row polynomials R of A127672. This follows from the product of the zeros of R, and the formula product(2*cos((2*k+1)*Pi/(2*n)), k=0..n-1) = (1 + (-1)^n)*(-1)^(n/2), n >= 1 (see the Gradstein and Ryshik reference, p. 63, 1.396 4., with x = sqrt(-1)). - _Wolfdieter Lang_, Oct 21 2013

%F a(n) = Sum_{k=0..n} i^(k*(k+1)), where i=sqrt(-1). [_Bruno Berselli_, Mar 11 2015]

%F Dirichlet g.f. of a(n) shifted right: L(chi_2(4),s) = beta(s) = (1-2^(-s))*(D.g.f. of A034947), see comments by Lang and Forgues. - _Ralf Stephan_, Mar 27 2015

%e With a(n-1) = h(n) of Niven-Zuckerman: a(62) = h(63) = h(3^2*7^1) = (-1)^(2*1)*(-1)^(1*3) = -1 = h(3)^2*h(7) = a(2)^2*a(6) = (-1)^2*(-1) = -1. - _Wolfdieter Lang_, Apr 19 2013

%p A056594 := n->(1-irem(n,2))*(-1)^iquo(n,2); # _Peter Luschny_, Jul 27 2011

%t CoefficientList[Series[1/(1 + x^2), {x, 0, 50}], x]

%t a[n_]:= KroneckerSymbol[-4,n+1];Table[a[n],{n,0,93}]. (* Thanks to _Jean-François Alcover_. - _Wolfdieter Lang_, May 31 2013 *)

%t CoefficientList[Series[1/Cyclotomic[4, x], {x, 0, 100}], x] (* _Vincenzo Librandi_, Apr 03 2014 *)

%o (PARI) {a(n) = real( I^n )}

%o (PARI) {a(n) = kronecker(-4, n+1) }

%o (MAGMA) &cat[ [1, 0, -1, 0]: n in [0..23] ]; // _Bruno Berselli_, Feb 08 2011

%o (Maxima) A056594(n) := block(

%o [1,0,-1,0][1+mod(n,4)]

%o )\$ /* _R. J. Mathar_, Mar 19 2012 */

%Y Cf. A049310, A074661, A131852, A002654.

%K sign,easy

%O 0,1

%A _Wolfdieter Lang_, Aug 04 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 01:42 EST 2019. Contains 329850 sequences. (Running on oeis4.)