Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 08 2022 08:45:01
%S 0,1,1,1024,59049,9765625,1073741824,137858491849,16679880978201,
%T 2064377754059776,253295162119140625,31181719929966183601,
%U 3833759992447475122176,471584161164422542970449
%N Tenth power of Fibonacci numbers A000045.
%C Divisibility sequence; that is, if n divides m, then a(n) divides a(m).
%D D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
%H Vincenzo Librandi, <a href="/A056587/b056587.txt">Table of n, a(n) for n = 0..96</a>
%H A. Brousseau, <a href="http://www.fq.math.ca/Scanned/6-1/brousseau3.pdf">A sequence of power formulas</a>, Fib. Quart., 6 (1968), 81-83.
%H J. Riordan, <a href="http://dx.doi.org/10.1215/S0012-7094-62-02902-2">Generating functions for powers of Fibonacci numbers</a>, Duke. Math. J. 29 (1962) 5-12.
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>
%F a(n) = F(n)^10, F(n)=A000045(n).
%F G.f.: x*p(10, x)/q(10, x) with p(10, x) := sum_{m=0..9} A056588(9, m)*x^m = (1-x)*(1 - 87*x - 4047*x^2 + 42186*x^3 + 205690*x^4 + 42186*x^5 - 4047*x^6 - 87*x^7 + x^8) and q(10, x) := sum_{m=0..11} A055870(11, m)*x^m = (1+x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)*(1 + 47*x + x^2)*(1 - 123*x + x^2) (denominator factorization deduced from Riordan result).
%F Recursion (cf. Knuth's exercise): sum_{m=0..11} A055870(11, m)*a(n-m) = 0, n >= 11; inputs: a(n), n=0..10. a(n) = 89*a(n-1) + 4895*a(n-2) - 83215*a(n-3) - 582505*a(n-4) + 1514513*a(n-5) + 1514513*a(n-6) - 582505*a(n-7) -83215*a(n-8) + 4895*a(n-9) + 89*a(n-10) - a(n-11).
%t Fibonacci[Range[0,15]]^10 (* _Harvey P. Dale_, Jul 29 2018 *)
%o (Magma) [Fibonacci(n)^10: n in [0..20]]; // _Vincenzo Librandi_, Jun 04 2011
%o (PARI) a(n) = fibonacci(n)^10; \\ _Michel Marcus_, Sep 06 2017
%Y Cf. A000045, A007598, A056570, A056571, A056572, A056573, A056574, A056585, A056586, A056588, A055870.
%K nonn,easy
%O 0,4
%A _Wolfdieter Lang_, Jul 10 2000
%E More terms from Larry Reeves (larryr(AT)acm.org), Jul 17 2001