login
Difference between 3^n and highest power of 2 less than or equal to 3^n.
10

%I #15 Sep 30 2017 23:55:12

%S 0,1,1,11,17,115,217,139,2465,3299,26281,46075,7153,545747,588665,

%T 5960299,9492289,62031299,118985033,88519643,1339300753,1870418611,

%U 14201190425,25423702091,7551629537

%N Difference between 3^n and highest power of 2 less than or equal to 3^n.

%C a(n) = A227048(n,1). - _Reinhard Zumkeller_, Jun 30 2013

%H Reinhard Zumkeller, <a href="/A056577/b056577.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = 3^n - 2^floor(log_2(3^n)) = A000244(n) - 2^A056576(n).

%e a(3)=11 because 3^3 = 27 and 27 - 16 = 11.

%t Table[# - 2^Floor@ Log2@ # &[3^n], {n, 0, 24}] (* _Michael De Vlieger_, Sep 30 2017 *)

%o (Haskell)

%o a056577 = head . a227048_row -- _Reinhard Zumkeller_, Jun 30 2013

%Y Cf. A000244, A056576, A063005, A227048.

%K nonn

%O 0,4

%A _Henry Bottomley_, Jun 29 2000