Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Nov 05 2024 12:17:03
%S 0,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
%T 4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,
%U 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
%N First tetrahedral coordinate; repeat m (m+1)*(m+2)/2 times.
%C If {(X,Y,Z)} are triples of nonnegative integers with X >= Y >= Z ordered by X, Y and Z, then X=A056556(n), Y=A056557(n) and Z=A056558(n).
%C From _Gus Wiseman_, Jul 03 2019: (Start)
%C Also the maximum number of distinct multiplicities among integer partitions of n. For example, random partitions of 56 realizing each number of distinct multiplicities are:
%C 1: (24,17,6,5,3,1)
%C 2: (10,9,9,5,5,4,4,3,3,2,1,1)
%C 3: (6,5,5,5,4,4,4,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
%C 4: (28,5,5,3,3,3,2,2,1,1,1,1,1)
%C 5: (13,4,4,4,4,4,3,3,3,2,2,2,2,2,2,1,1)
%C 6: (6,5,5,4,4,4,3,3,3,3,2,2,2,2,2,1,1,1,1,1,1)
%C The maximum number of distinct multiplicities is 6, so a(56) = 6.
%C (End)
%F a(n) = floor(x) where x is the (largest real) solution to x^3 + 3x^2 + 2x - 6n = 0; a(A000292(n)) = n+1.
%F a(n+1) = a(n)+1 if a(n) = A056558(n), otherwise a(n). - _Graeme McRae_, Jan 09 2007
%F a(n) = floor(t/3 + 1/t - 1), where t = (81*n + 3*sqrt(729*n^2 - 3))^(1/3). - _Ridouane Oudra_, Mar 21 2021
%F a(n) = floor(t + 1/(3*t) - 1), where t = (6*n)^(1/3), for n>=1. - _Ridouane Oudra_, Nov 04 2022
%F a(n) = m if n>=binomial(m+2,3) and a(n) = m-1 otherwise where m = floor((6n+6)^(1/3)). - _Chai Wah Wu_, Nov 04 2024
%e 3 is (3+1) * (3+2)/2 = 10 times in the sequence all these occurrences are in consecutive places. The first 3 is at position binomial(3 + 2, 3) = 10, the last one at binomial((3 + 1) + 2, 3) - 1. - _David A. Corneth_, Oct 14 2022
%t Table[Table[m, {(m+1)(m+2)/2}], {m, 0, 7}] // Flatten (* _Jean-François Alcover_, Feb 28 2019 *)
%o (PARI) a(n)=my(t=polrootsreal(x^3+3*x^2+2*x-6*n)); t[#t]\1 \\ _Charles R Greathouse IV_, Feb 22 2017
%o (Python)
%o from math import comb
%o from sympy import integer_nthroot
%o def A056556(n): return (m:=integer_nthroot(6*(n+1),3)[0])-(n<comb(m+2,3)) # _Chai Wah Wu_, Nov 04 2024
%Y Cf. A000292, A003056, A056557, A056558, A056559, A056560.
%Y See also A194847.
%Y Cf. A088880, A088881, A116608, A325242.
%K nonn,easy
%O 0,5
%A _Henry Bottomley_, Jun 26 2000
%E Incorrect formula deleted by _Ridouane Oudra_, Nov 04 2022