%I #67 Jun 02 2024 19:44:58
%S 0,1,4,17,86,517,3620,28961,260650,2606501,28671512,344058145,
%T 4472755886,62618582405,939278736076,15028459777217,255483816212690,
%U 4598708691828421,87375465144740000,1747509302894800001,36697695360790800022,807349297937397600485
%N a(n) = n*a(n-1) + 1, a(1) = 0.
%C For n >= 2 also operation count to create all permutations of n distinct elements using Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of loop repetitions of the j search loop in step L2. - _Hugo Pfoertner_, Feb 06 2003
%C More directly: sum over all permutations of length n-1 of the product of the length of the first increasing run by the value of the first position. The recurrence follows from this definition. - _Olivier Gérard_, Jul 07 2011
%C This sequence shares divisibility properties with A000522; each of the primes in A072456 divide only a finite number of terms of this sequence. - _T. D. Noe_, Jul 07 2005
%C This sequence also represents the number of subdeterminant evaluations when calculation a determinant by Laplace recursive method. - _Reinhard Muehlfeld_, Sep 14 2010
%C Also, a(n) equals the number of non-isomorphic directed graphs of n+1 vertices with 1 component, where each vertex has exactly one outgoing edge, excluding loops and cycle graphs. - _Stephen Dunn_, Nov 30 2019
%D D. E. Knuth: The Art of Computer Programming, Volume 4, Combinatorial Algorithms, Volume 4A, Enumeration and Backtracking. Pre-fascicle 2B, A draft of section 7.2.1.2: Generating all permutations. Available online; see link.
%H T. D. Noe, <a href="/A056542/b056542.txt">Table of n, a(n) for n = 1..100</a>
%H D. E. Knuth, <a href="http://www-cs-faculty.stanford.edu/~knuth/fasc2b.ps.gz">TAOCP Vol. 4, Pre-fascicle 2b (generating all permutations)</a>.
%H Tom Muller, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Mueller/mueller6.html">Prime and Composite Terms in Sloane's Sequence A056542</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.3. [Includes factorizations of a(1) through a(50)]
%H Hugo Pfoertner, <a href="http://www.randomwalk.de/sequences/lpure.txt">FORTRAN implementation of Knuth's Algorithm L for lexicographic permutation generation</a>.
%H R. Sedgewick, <a href="http://homepage.math.uiowa.edu/~goodman/22m150.dir/2007/Permutation%20Generation%20Methods.pdf">Permutation generation methods</a>, Computing Surveys, 9 (1977), 137-164.
%H Sam Wagstaff, <a href="/A056542/a056542.txt">Factorizations of a(51) through a(90)</a>
%F a(n) = floor((e-2)*n!).
%F a(n) = A002627(n) - n!.
%F a(n) = A000522(n) - 2*n!.
%F a(n) = n! - A056543(n).
%F a(n) = (n-1)*(a(n-1) + a(n-2)) + 2, n > 2. - _Gary Detlefs_, Jun 22 2010
%F 1/(e - 2) = 2! - 2!/(1*4) - 3!/(4*17) - 4!/(17*86) - 5!/(86*517) - ... (see A002627 and A185108). - _Peter Bala_, Oct 09 2013
%F E.g.f.: (exp(x) - 1 - x) / (1 - x). - _Ilya Gutkovskiy_, Jun 26 2022
%e a(4) = 4*a(3) + 1 = 4*4 + 1 = 17.
%e Permutations of order 3 .. Length of first run * First position
%e 123..3*1
%e 132..2*1
%e 213..1*2
%e 231..2*2
%e 312..1*3
%e 321..1*3
%e a(4) = 3+2+2+4+3+3 = 17. - _Olivier Gérard_, Jul 07 2011
%t tmp=0; Join[{tmp}, Table[tmp=n*tmp+1, {n, 2, 100}]] (* _T. D. Noe_, Jul 12 2005 *)
%t FoldList[ #1*#2 + 1 &, 0, Range[2, 21]] (* _Robert G. Wilson v_, Oct 11 2005 *)
%o (Haskell)
%o a056542 n = a056542_list !! (n-1)
%o a056542_list = 0 : map (+ 1) (zipWith (*) [2..] a056542_list)
%o -- _Reinhard Zumkeller_, Mar 24 2013
%o (Magma) [n le 2 select n-1 else n*Self(n-1)+1: n in [1..20]]; // _Bruno Berselli_, Dec 13 2013
%Y Cf. A079751 (same recursion formula, but starting from a(3)=0), A038155, A038156, A080047, A080048, A080049.
%Y Cf. A007808, A002627.
%Y Equals the row sums of A162995 triangle (n>=2). - _Johannes W. Meijer_, Jul 21 2009
%Y Cf. A073333, A002627, A185108.
%Y Cf. A329426, A329427.
%Y Cf. A070213 (indices of primes).
%K easy,nonn
%O 1,3
%A _Henry Bottomley_, Jun 20 2000
%E More terms from _James A. Sellers_, Jul 04 2000