login
Irregular triangle read by rows: row n lists the divisors of n in decreasing order.
34

%I #28 Sep 08 2022 08:45:01

%S 1,2,1,3,1,4,2,1,5,1,6,3,2,1,7,1,8,4,2,1,9,3,1,10,5,2,1,11,1,12,6,4,3,

%T 2,1,13,1,14,7,2,1,15,5,3,1,16,8,4,2,1,17,1,18,9,6,3,2,1,19,1,20,10,5,

%U 4,2,1,21,7,3,1,22,11,2,1,23,1,24,12,8,6,4,3,2,1,25,5,1,26,13,2,1,27,9

%N Irregular triangle read by rows: row n lists the divisors of n in decreasing order.

%C Old name was "Replace n by its divisors in reverse order."

%C This gives the second elements of the ordered pairs (a,b), a >= 1, b >= 1, ordered by their product ab.

%C T(n,k) = n / A027750(n,k) = A027750(n,n-k+1), 1 <= k <= A000005(n). - _Reinhard Zumkeller_, Sep 28 2014

%C The 2nd column of the triangle is the largest proper divisor (A032742). - _Charles Kusniec_, Jan 30 2021

%H Reinhard Zumkeller, <a href="/A056538/b056538.txt">Rows n = 1..1000 of triangle, flattened</a>

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/poldiv05.jpg">Illustration of the divisors of n</a> - _Omar E. Pol_, Nov 22 2009

%F a(n) = A064894(A064896(n)).

%e Triangle begins:

%e 1;

%e 2, 1;

%e 3, 1;

%e 4, 2, 1;

%e 5, 1;

%e 6, 3, 2, 1;

%e 7, 1;

%e 8, 4, 2, 1;

%e 9, 3, 1;

%e 10, 5, 2, 1;

%e 11, 1;

%e 12, 6, 4, 3, 2, 1;

%e 13, 1;

%e 14, 7, 2, 1;

%e 15, 5, 3, 1;

%e 16, 8, 4, 2, 1;

%e 17, 1;

%e 18, 9, 6, 3, 2, 1;

%e 19, 1;

%e 20, 10, 5, 4, 2, 1;

%p map(op,[seq(reverse(sort(divisors(j))),j=1..30)]);

%p cdr := proc(l) if 0 = nops(l) then ([]) else (l[2..nops(l)]): fi: end:

%p reverse := proc(l) if 0 = nops(l) then ([]) else [op(reverse(cdr(l))), l[1]]; fi: end:

%t Table[Reverse@ Divisors@ n, {n, 27}] // Flatten (* _Michael De Vlieger_, Jul 27 2016 *)

%o (Magma) [Reverse(Divisors(n)) : n in [1..30]];

%o (Haskell)

%o a056538 n k = a056538_tabf !! (n-1) !! (k-1)

%o a056538_row n = a056538_tabf !! (n-1)

%o a056538_tabf = map reverse a027750_tabf

%o -- _Reinhard Zumkeller_, Sep 28 2014

%o (PARI) row(n)=Vecrev(divisors(n)) \\ _Charles R Greathouse IV_, Sep 02 2015

%Y Cf. A027750 for the first elements, A056534, A168017, A000005 (row lengths), A000203 (row sums), A032742 (largest proper divisor).

%K nonn,tabf

%O 1,2

%A _Antti Karttunen_, Jun 20, 2000

%E Definition revised by _N. J. A. Sloane_, Jul 27 2016