%I #13 Oct 01 2019 19:50:07
%S 0,0,0,0,0,0,0,1,1,10,15,85,140,618,1050,4064,6951,24914,42525,145057,
%T 246730,814200,1379400,4446545,7508501,23798460,40075034,125435695,
%U 210766920,653516168,1096190550,3374551384,5652751636,17305626334,28958095545,88274117232
%N Number of primitive (period n) periodic palindromic structures using exactly five different symbols.
%D M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
%H Andrew Howroyd, <a href="/A056522/b056522.txt">Table of n, a(n) for n = 1..200</a>
%F a(n) = A056516(n) - A056515(n).
%F Moebius transform of A056511. - _Andrew Howroyd_, Oct 01 2019
%e For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure. This should be different from A056511.
%Y Column 5 of A285037.
%Y Cf. A056484, A056511, A056515, A056516.
%K nonn
%O 1,10
%A _Marks R. Nester_
%E a(17)-a(28) from _Andrew Howroyd_, Apr 09 2017
%E Terms a(29) and beyond from _Andrew Howroyd_, Oct 01 2019