login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of bracelets of length n using exactly five different colored beads.
4

%I #27 Oct 13 2018 09:30:18

%S 0,0,0,0,12,150,1200,7905,46400,255636,1346700,6901725,34663020,

%T 171786450,843130688,4110958530,19951305240,96528492700,466073976900,

%U 2247627076731,10832193571460,52194109216950

%N Number of bracelets of length n using exactly five different colored beads.

%C Turning over will not create a new bracelet.

%D M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

%F a(n) = A032276(n) - 5*A032275(n) + 10*A027671(n) - 10*A000029(n) + 5.

%F From _Robert A. Russell_, Sep 27 2018: (Start)

%F a(n) = (k!/4) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/2n) * Sum_{d|n} phi(d) * S2(n/d,k), where k=5 is the number of colors and S2 is the Stirling subset number A008277.

%F G.f.: (k!/4) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2) - Sum_{d>0} (phi(d)/2d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=5 is the number of colors. (End)

%e For a(5)=12, pair up the 24 permutations of BCDE, each with its reverse, such as BCDE-EDCB. Precede the first of each pair with an A, such as ABCDE. These are the 12 arrangements, all chiral. If we precede the second of each pair with an A, such as AEDCB, we get the chiral partner of each. - _Robert A. Russell_, Sep 27 2018

%t t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]);

%t T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}];

%t a[n_] := T[n, 5];

%t Array[a, 22] (* _Jean-François Alcover_, Nov 05 2017, after _Andrew Howroyd_ *)

%t k=5; Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,30}] (* _Robert A. Russell_, Sep 27 2018 *)

%Y Column 5 of A273891.

%Y Equals (A056285 + A056491) / 2 = A056285 - A305544 = A305544 + A056491.

%K nonn

%O 1,5

%A _Marks R. Nester_