Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Mar 03 2024 11:23:22
%S 0,0,0,1,6,37,183,877,3930,17185,73095,306361,1267266,5198557,
%T 21182343,85910917,347187210,1399451545,5629911015,22616256721,
%U 90754855026,363890126677,1458172596903,5840531635357,23385650196090
%N Number of reversible string structures with n beads using exactly four different colors.
%C A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.
%C Number of set partitions for an unoriented row of n elements using exactly four different elements. An unoriented row is equivalent to its reverse. - _Robert A. Russell_, Oct 14 2018
%D M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (8, -12, -44, 121, 12, -228, 144).
%F a(n) = A056323(n) - A001998(n-1).
%F Empirical g.f.: -x^4*(3*x^3 + x^2 - 2*x + 1) / ((x-1)*(2*x-1)*(2*x+1)*(3*x-1)*(4*x-1)*(3*x^2-1)). - _Colin Barker_, Nov 25 2012
%F From _Robert A. Russell_, Oct 14 2018: (Start)
%F a(n) = (S2(n,k) + A(n,k))/2, where k=4 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
%F a(n) = (A000453(n) + A304974(n)) / 2 = A000453(n) - A320527(n) = A320527(n) + A304974(n). (End)
%e For a(5)=6, the color patterns are ABCDA, ABCBD, AABCD, ABACD, ABCAD, and ABBCD. The first two are achiral. - _Robert A. Russell_, Oct 14 2018
%t k=4; Table[(StirlingS2[n,k] + If[EvenQ[n], StirlingS2[n/2+2,4] - StirlingS2[n/2+1,4] - 2StirlingS2[n/2,4], 2StirlingS2[(n+3)/2,4] - 4StirlingS2[(n+1)/2,4]])/2, {n,30}] (* _Robert A. Russell_, Oct 14 2018 *)
%t Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
%t k = 4; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 30}] (* _Robert A. Russell_, Oct 14 2018 *)
%t LinearRecurrence[{8, -12, -44, 121, 12, -228, 144}, {0, 0, 0, 1, 6, 37, 183}, 30] (* _Robert A. Russell_, Oct 14 2018 *)
%Y Column 4 of A284949.
%Y Cf. A056311.
%Y Cf. A000453 (oriented), A320527 (chiral), A304974 (achiral).
%K nonn
%O 1,5
%A _Marks R. Nester_