login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-bead necklace structures using exactly six different colored beads.
4

%I #25 Jul 28 2018 11:41:02

%S 0,0,0,0,0,1,3,36,296,2303,16317,110462,717024,4532105,28046285,

%T 170938814,1029749994,6149327905,36477979041,215304158916,

%U 1265984738264,7422971231829,43433472086235,253759842223290

%N Number of n-bead necklace structures using exactly six different colored beads.

%C Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

%D M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

%H E. N. Gilbert and J. Riordan, <a href="http://projecteuclid.org/euclid.ijm/1255631587">Symmetry types of periodic sequences</a>, Illinois J. Math., 5 (1961), 657-665.

%F a(n) = A056294(n) - A056293(n).

%F From _Robert A. Russell_, May 29 2018: (Start)

%F a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 60] * (S2(n/d+5,6) -

%F 10*S2(n/d+4,6) + 35*S2(n/d+3,6) - 50*S2(n/d+2,6) + 24*S2(n/d+1,6)) +

%F [d==30 mod 60] * (S2(n/d+5,6) - 12*S2(n/d+4,6) + 56*S2(n/d+3,6) -

%F 123*S2(n/d+2,6) + 108*S2(n/d+1,6)) + [d==20 mod 60 | d==40 mod 60] *

%F (4*S2(n/d+4,6) - 44*S2(n/d+3,6) + 176*S2(n/d+2,6) - 296*S2(n/d+1,6) +

%F 160*S2(n/d,6)) + [d==15 mod 60 | d==45 mod 60] * (3*S2(n/d+4,6) -

%F 36*S2(n/d+3,6) + 159*S2(n/d+2,6) - 306*S2(n/d+1,6) + 225*S2(n/d,6)) +

%F [d mod 60 in {12,24,36,48}] * (S2(n/d+5,6) - 12*S2(n/d+4,6) +

%F 59*S2(n/d+3,6) - 156*S2(n/d+2,6) + 228*S2(n/d+1,6) - 144*S2(n/d,6)) +

%F [d=10 mod 60 | d==50 mod 60] * (2*S2(n/d+4,6) - 23*S2(n/d+3,6) +

%F 103*S2(n/d+2,6) - 212*S2(n/d+1,6) + 160*S2(n/d,6)) + [d mod 60 in

%F {6,18,42,54}] * (S2(n/d+5,6) - 14*S2(n/d+4,6) + 80*S2(n/d+3,6) -

%F 229*S2(n/d+2,6) + 312*S2(n/d+1,6) - 144*S2(n/d,6)) + [d mod 60 in

%F {5,25,35,55}] * (2*S2(n/d+4,6) - 24*S2(n/d+3,6) + 106*S2(n/d+2,6) -

%F 204*S2(n/d+1,6) + 145*S2(n/d,6)) + [d mod 60 in {4,8,16,28,32,44,52,56}] *

%F (2*S2(n/d+4,6) - 20*S2(n/d+3,6) + 70*S2(n/d+2,6) - 92*S2(n/d+1,6) +

%F 16*S2(n/d,6)) + [d mod 60 in {3,9,21,27,33,39,51,57}] * (S2(n/d+4,6) -

%F 12*S2(n/d+3,6) + 53*S2(n/d+2,6) - 102*S2(n/d+1,6) + 81*S2(n/d,6)) +

%F [d mod 60 in {2,14,22,26,34,38,46,58}] * (S2(n/d+3,6) - 3*S2(n/d+2,6) -

%F 8*S2(n/d+1,6) + 16*S2(n/d,6)) + [d mod 60 in {1,7,11,13,17,19,23,29,31,37,

%F 41,43,47,49,53,59}] * S2(n/d,6)), where S2(n,k) is the Stirling subset

%F number, A008277.

%F G.f.: -Sum_{d>0} (phi(d) / d) * ([d==0 mod 60] * (log(1-6x^d) -

%F log(1-5x^d)) + [d==30 mod 60] * (3*log(1-6x^d) - 3*log(1-5x^d) +

%F log(1-2x^d) - log(1-x^d)) / 4 + [d==20 mod 60 | d==40 mod 60] *

%F (5*log(1-6x^d) - 6*log(1-5x^d) + 2*log(1-3x^d) - 3*log(1-2x^d)) / 9 +

%F [d==15 mod 60 | d==45 mod 60] * (5*log(1-6x^d) - 6*log(1-5x^d) +

%F 3*log(1-4x^d) - 4*log(1-3x^d) + 3*log(1-2x^d) - 6*log(1-x^d)) / 16 +

%F [d mod 60 in {12,24,36,48}] * (4*log(1-6x^d) - 4*log(1-5x^d) +

%F log(1-x^d)) / 5 + [d=10 mod 60 | d==50 mod 60] * (11*log(1-6x^d) -

%F 15*log(1-5x^d) + 8*log(1-3x^d) - 3*log(1-2x^d) - 9*log(1-x^d)) / 36 +

%F [d mod 60 in {6,18,42,54}] * (11*log(1-6x^d) - 11*log(1-5x^d) +

%F 5*log(1-2x^d) - log(1-x^d)) / 20 + [d mod 60 in {5,25,35,55}] *

%F (29*log(1-6x^d) - 30*log(1-5x^d) + 3*log(1-4x^d) - 4*log(1-3x^d) +

%F 3*log(1-2x^d) - 30*log(1-x^d)) / 144 + [d mod 60 in {4,8,16,28,32,44,52,

%F 56}] * (16*log(1-6x^d) - 21*log(1-5x^d) + 10*log(1-3x^d) -

%F 15*log(1-2x^d) + 9*log(1-x^d)) / 45 + [d mod 60 in {3,9,21,27,33,39,51, 57}] * (9*log(1-6x^d) - 14*log(1-5x^d) + 15*log(1-4x^d) - 20*log(1-3x^d) +

%F 15*log(1-2x^d) - 14*log(1-x^d)) / 80 + [d mod 60 in {2,14,22,26,34,38,46,

%F 58}] * (19*log(1-6x^d) - 39*log(1-5x^d) + 40*log(1-3x^d) -

%F 15*log(1-2x^d) - 9*log(1-x^d)) / 180 + [d mod 60 in {1,7,11,13,17,19,23, 29,31,37,41,43,47,49,53,59}] * (log(1-6x^d) - 6 log(1-5x^d) +

%F 15 log(1-4x^d) - 20 log(1-3x^d) + 15 log(1-2x^d) - 6 log(1-x^d)) / 720).

%F (End)

%t From _Robert A. Russell_, May 29 2018: (Start)

%t Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &],

%t Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];

%t Table[Coefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/n , x, 6],

%t {n, 1, 40}] (* after Gilbert and Riordan *)

%t Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 60], StirlingS2[n/#+5, 6] - 10 StirlingS2[n/#+4, 6] + 35 StirlingS2[n/#+3, 6] - 50 StirlingS2[n/#+2, 6] + 24 StirlingS2[n/#+1, 6], Divisible[#, 30], StirlingS2[n/#+5, 6] - 12 StirlingS2[n/#+4, 6] + 56 StirlingS2[n/#+3, 6] - 123 StirlingS2[n/#+2, 6] + 108 StirlingS2[n/#+1, 6], Divisible[#, 20], 4 StirlingS2[n/#+4, 6] - 44 StirlingS2[n/#+3, 6] + 176 StirlingS2[n/#+2, 6] - 296 StirlingS2[n/#+1, 6] + 160 StirlingS2[n/#, 6], Divisible[#, 15], 3 StirlingS2[n/#+4, 6] - 36 StirlingS2[n/#+3, 6] + 159 StirlingS2[n/#+2, 6] - 306 StirlingS2[n/#+1, 6] + 225 StirlingS2[n/#, 6], Divisible[#, 12], StirlingS2[n/#+5, 6] - 12 StirlingS2[n/#+4, 6] + 59 StirlingS2[n/#+3, 6] - 156 StirlingS2[n/#+2, 6] + 228 StirlingS2[n/#+1, 6] - 144 StirlingS2[n/#, 6], Divisible[#, 10], 2 StirlingS2[n/#+4, 6] - 23 StirlingS2[n/#+3, 6] + 103 StirlingS2[n/#+2, 6] - 212 StirlingS2[n/#+1, 6] + 160 StirlingS2[n/#, 6], Divisible[#, 6], StirlingS2[n/#+5, 6] - 14 StirlingS2[n/#+4, 6] + 80 StirlingS2[n/#+3, 6] - 229 StirlingS2[n/#+2, 6] + 312 StirlingS2[n/#+1, 6] - 144 StirlingS2[n/#, 6], Divisible[#, 5], 2 StirlingS2[n/#+4, 6] - 24 StirlingS2[n/#+3, 6] + 106 StirlingS2[n/#+2, 6] - 204 StirlingS2[n/#+1, 6] + 145 StirlingS2[n/#, 6], Divisible[#, 4], 2 StirlingS2[n/#+4, 6] - 20 StirlingS2[n/#+3, 6] + 70 StirlingS2[n/#+2, 6] - 92 StirlingS2[n/#+1, 6] + 16 StirlingS2[n/#, 6], Divisible[#, 3], StirlingS2[n/#+4, 6] - 12 StirlingS2[n/#+3, 6] + 53 StirlingS2[n/#+2, 6] - 102 StirlingS2[n/#+1, 6] + 81 StirlingS2[n/#, 6], Divisible[#, 2], StirlingS2[n/#+3, 6] - 3 StirlingS2[n/#+2, 6] - 8 StirlingS2[n/#+1, 6] + 16 StirlingS2[n/#, 6], True, StirlingS2[n/#, 6]] &], {n, 1, 40}]

%t mx = 40; Drop[CoefficientList[Series[-Sum[(EulerPhi[d] / d) Which[

%t Divisible[d, 60], Log[1 - 6x^d] - Log[1 - 5x^d], Divisible[d, 30],

%t (3 Log[1 - 6x^d] - 3 Log[1 - 5x^d] + Log[1 - 2x^d] - Log[1 - x^d]) / 4,

%t Divisible[d, 20], (5 Log[1 - 6x^d] - 6 Log[1 - 5x^d] + 2 Log[1 - 3x^d] -

%t 3 Log[1 - 2x^d]) / 9, Divisible[d, 15], (5 Log[1 - 6x^d] -

%t 6 Log[1 - 5x^d] + 3 Log[1 - 4x^d] - 4 Log[1 - 3x^d] + 3 Log[1 - 2x^d] -

%t 6 Log[1 - x^d]) / 16, Divisible[d, 12], (4 Log[1 - 6x^d] -

%t 4 Log[1 - 5x^d] + Log[1 - x^d]) / 5, Divisible[d, 10], (11 Log[1 - 6x^d] -

%t 15 Log[1 - 5x^d] + 8 Log[1 - 3x^d] - 3 Log[1 - 2x^d] - 9 Log[1 - x^d]) /

%t 36, Divisible[d, 6], (11 Log[1 - 6x^d] - 11 Log[1 - 5x^d] +

%t 5 Log[1 - 2x^d] - Log[1 - x^d]) / 20, Divisible[d, 5], (29 Log[1 - 6x^d] -

%t 30 Log[1 - 5x^d] + 3 Log[1 - 4x^d] - 4 Log[1 - 3x^d] + 3 Log[1 - 2x^d] -

%t 30 Log[1 - x^d]) / 144, Divisible[d, 4], (16 Log[1 - 6x^d] -

%t 21 Log[1 - 5x^d] + 10 Log[1 - 3x^d] - 15 Log[1 - 2x^d] + 9 Log[1 - x^d]) /

%t 45, Divisible[d, 3], (9 Log[1 - 6x^d] - 14 Log[1 - 5x^d] +

%t 15 Log[1 - 4x^d] - 20 Log[1 - 3x^d] + 15 Log[1 - 2x^d] -

%t 14 Log[1 - x^d]) / 80, Divisible[d, 2], (19 Log[1 - 6x^d] -

%t 39 Log[1 - 5x^d] + 40 Log[1 - 3x^d] - 15 Log[1 - 2x^d] - 9 Log[1 - x^d]) /

%t 180, True, (Log[1 - 6x^d] - 6 Log[1 - 5x^d] + 15 Log[1 - 4x^d] -

%t 20 Log[1 - 3x^d] + 15 Log[1 - 2x^d] - 6 Log[1 - x^d]) / 720],

%t {d, 1, mx}], {x, 0, mx}], x], 1]

%t (End)

%Y Column 6 of A152175.

%Y Cf. A056286, A056293, A056294.

%K nonn

%O 1,7

%A _Marks R. Nester_