%I #25 Jul 28 2018 11:39:50
%S 0,0,0,0,1,3,20,136,773,4281,22430,115100,577577,2863227,14051164,
%T 68515514,332514803,1608800691,7767857090,37460388596,180536313547,
%U 869901397479,4192038616700,20208367895980
%N Number of n-bead necklace structures using exactly five different colored beads.
%C Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.
%D M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
%H E. N. Gilbert and J. Riordan, <a href="http://projecteuclid.org/euclid.ijm/1255631587">Symmetry types of periodic sequences</a>, Illinois J. Math., 5 (1961), 657-665.
%F a(n) = A056293(n) - A056292(n).
%F From _Robert A. Russell_, May 29 2018: (Start)
%F a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 60] * (S2(n/d+4,5) -
%F 6*S2(n/d+3,5) + 11*S2(n/d+2,5) - 6*S2(n/d+1,5)) + [d==30 mod 60] *
%F (S2(n/d+4,5) - 8*S2(n/d+3,5) + 26*S2(n/d+2,5) - 43*S2(n/d+1,5) +
%F 30*S2(n/d,5)) + [d==20 mod 60 | d==40 mod 60] * (S2(n/d+4,5) -
%F 8*S2(n/d+3,5) + 23*S2(n/d+2,5) - 24*S2(n/d+1,5)) + [d==15 mod 60 |
%F d==45 mod 60] * (S2(n/d+4,5) - 10*S2(n/d+3,5) + 38*S2(n/d+2,5) -
%F 65*S2(n/d+1,5) + 45*S2(n/d,5)) + [d mod 60 in {12,24,36,48}] *
%F (4*S2(n/d+3,5) - 24*S2(n/d+2,5) + 44*S2(n/d+1,5) - 24*S2(n/d,5)) +
%F [d=10 mod 60 | d==50 mod 60] * (S2(n/d+4,5) - 10*S2(n/d+3,5) +
%F 38*S2(n/d+2,5) - 61*S2(n/d+1,5) + 30*S2(n/d,5)) + [d mod 60 in
%F {6,18,42,54}] * (2*S2(n/d+3,5) - 9*S2(n/d+2,5) + 7*S2(n/d+1,5) +
%F 6*S2(n/d,5)) + [d mod 60 in {5,25,35,55}] * (S2(n/d+4,5) -
%F 10*S2(n/d+3,5) + 35*S2(n/d+2,5) - 50*S2(n/d+1,5) + 25*S2(n/d,5)) +
%F [d mod 60 in {4,8,16,28,32,44,52,56}] * (2*S2(n/d+3,5) - 12*S2(n/d+2,5) +
%F 26*S2(n/d+1,5) - 24*S2(n/d,5)) + [d mod 60 in {3,9,21,27,33,39,51,57}] *
%F (3*S2(n/d+2,5) - 15*S2(n/d+1,5) + 21*S2(n/d,5)) + [d mod 60 in
%F {2,14,22,26,34,38,46,58}] * (3*S2(n/d+2,5) - 11*S2(n/d+1,5) +
%F 6*S2(n/d,5)) + [d mod 60 in {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,
%F 59}] * S2(n/d,5)), where S2(n,k) is the Stirling subset number, A008277.
%F G.f.: -Sum_{d>0} (phi(d) / d) * ([d==0 mod 60] * (log(1-4x^d) -
%F log(1-3x^d)) + [d==30 mod 60] * (3*log[1-5x^d) - 3*log(1-4x^d) +
%F log(1-x^d)) / 4 + [d==20 mod 60 | d==40 mod 60] * (2*log(1-5x^d) -
%F 2*log(1-4x^d) + log(1-2x^d) - log(1-x^d)) / 3 +
%F [d==15 mod 60 | d==45 mod 60] * (3*log(1-5x^d) - 3*log(1-4x^d) +
%F 2*log(1-3x^d) - 2*log(1-2x^d) + 3*log(1-x^d)) / 8 + [d mod 60 in
%F {12,24,36,48}] * (4*log(1-5x^d) - 5*log(1-4x^d)) / 5 + [d=10 mod 60 |
%F d==50 mod 60] * (5*log(1-5x^d) - 5*log(1-4x^d) + 4*log(1-2x^d) -
%F log(1-x^d)) / 12 + [d mod 60 in {6,18,42,54}] * (11*log(1-5x^d) -
%F 15*log(1-4x^d) + 5*log(1-x^d)) / 20 + [d mod 60 in {5,25,35,55}] *
%F (5*log(1-5x^d) - log(1-4x^d) + 2*log(1-3x^d) - 2*log(1-2x^d) +
%F log(1-x^d)) / 24 + [d mod 60 in {4,8,16,28,32,44,52,56}] *
%F (7*log(1-5x^d) - 10*log(1-4x^d) + 5*log(1-2x^d) - 5*log(1-x^d)) /
%F 15 + [d mod 60 in {3,9,21,27,33,39,51,57}] * (7*log(1-5x^d) -
%F 15*log(1-4x^d) + 10*log(1-3x^d) - 10*log(1-2x^d) + 15*log(1-x^d)) /
%F 40 + [d mod 60 in {2,14,22,26,34,38,46,58}] * (13*log(1-5x^d) -
%F 25*log(1-4x^d) + 20*log(1-2x^d) - 5*log(1-x^d)) / 60 + [d mod 60 in
%F {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}] * (log(1-5x^d) -
%F 5*log(1-4x^d) + 10*log(1-3x^d) - 10*log(1-2x^d) + 5*log(1-x^d)) / 120).
%F (End)
%t From _Robert A. Russell_, May 29 2018: (Start)
%t Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &],
%t Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
%t Table[Coefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/n , x, 5],
%t {n, 1, 40}] (* after Gilbert and Riordan *)
%t Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 60], StirlingS2[n/#+4, 5] - 6 StirlingS2[n/#+3, 5] + 11 StirlingS2[n/#+2, 5] - 6 StirlingS2[n/#+1, 5], Divisible[#, 30], StirlingS2[n/#+4, 5] - 8 StirlingS2[n/#+3, 5] + 26 StirlingS2[n/#+2, 5] - 43 StirlingS2[n/#+1, 5] + 30 StirlingS2[n/#, 5], Divisible[#, 20], StirlingS2[n/#+4, 5] - 8 StirlingS2[n/#+3, 5] + 23 StirlingS2[n/#+2, 5] - 24 StirlingS2[n/#+1, 5], Divisible[#, 15], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 38 StirlingS2[n/#+2, 5] - 65 StirlingS2[n/#+1, 5] + 45 StirlingS2[n/#, 5], Divisible[#, 12], 4 StirlingS2[n/#+3, 5] - 24 StirlingS2[n/#+2, 5] + 44 StirlingS2[n/#+1, 5] - 24 StirlingS2[n/#, 5], Divisible[#, 10], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 38 StirlingS2[n/#+2, 5] - 61 StirlingS2[n/#+1, 5] + 30 StirlingS2[n/#, 5], Divisible[#, 6], 2 StirlingS2[n/#+3, 5] - 9 StirlingS2[n/#+2, 5] + 7 StirlingS2[n/#+1, 5] + 6 StirlingS2[n/#, 5], Divisible[#, 5], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 35 StirlingS2[n/#+2, 5] - 50 StirlingS2[n/#+1, 5] + 25 StirlingS2[n/#, 5], Divisible[#, 4], 2 StirlingS2[n/#+3, 5] - 12 StirlingS2[n/#+2, 5] + 26 StirlingS2[n/#+1, 5] - 24 StirlingS2[n/#, 5], Divisible[#, 3], 3 StirlingS2[n/#+2, 5] - 15 StirlingS2[n/#+1, 5] + 21 StirlingS2[n/#, 5], Divisible[#, 2], 3 StirlingS2[n/#+2, 5] - 11 StirlingS2[n/#+1, 5] + 6 StirlingS2[n/#, 5], True, StirlingS2[n/#, 5]] &], {n, 1, 40}]
%t mx = 40; Drop[CoefficientList[Series[-Sum[(EulerPhi[d] / d) Which[
%t Divisible[d, 60], Log[1 - 5x^d] - Log[1 - 4x^d], Divisible[d, 30],
%t (3 Log[1 - 5x^d] - 3 Log[1 - 4x^d] + Log[1 - x^d]) / 4, Divisible[d, 20],
%t (2 Log[1 - 5x^d] - 2 Log[1 - 4x^d] + Log[1 - 2x^d] - Log[1 - x^d]) / 3,
%t Divisible[d, 15], (3 Log[1 - 5x^d] - 3 Log[1 - 4x^d] + 2 Log[1 - 3x^d] -
%t 2 Log[1 - 2x^d] + 3 Log[1 - x^d]) / 8, Divisible[d, 12],
%t (4 Log[1 - 5x^d] - 5 Log[1 - 4x^d]) / 5, Divisible[d, 10],
%t (5 Log[1 - 5x^d] - 5 Log[1 - 4x^d] + 4 Log[1 - 2x^d] - Log[1 - x^d]) / 12,
%t Divisible[d, 6], (11 Log[1 - 5x^d] - 15 Log[1 - 4x^d] + 5 Log[1 - x^d]) /
%t 20, Divisible[d, 5], (5 Log[1 - 5x^d] - Log[1 - 4x^d] + 2 Log[1 - 3x^d] -
%t 2 Log[1 - 2x^d] + Log[1 - x^d]) / 24, Divisible[d, 4], (7 Log[1 - 5x^d] -
%t 10 Log[1 - 4x^d] + 5 Log[1 - 2x^d] - 5 Log[1 - x^d]) / 15,
%t Divisible[d, 3], (7 Log[1 - 5x^d] - 15 Log[1 - 4x^d] + 10 Log[1 - 3x^d] -
%t 10 Log[1 - 2x^d] + 15 Log[1 - x^d]) / 40, Divisible[d, 2],
%t (13 Log[1 - 5x^d] - 25 Log[1 - 4x^d] + 20 Log[1 - 2x^d] -
%t 5 Log[1 - x^d]) / 60, True, (Log[1 - 5x^d] - 5 Log[1 - 4x^d] +
%t 10 Log[1 - 3x^d] - 10 Log[1 - 2x^d] + 5 Log[1 - x^d]) / 120], {d, 1, mx}], {x, 0, mx}], x], 1]
%t (End)
%Y Column 5 of A152175.
%Y Cf. A056285, A056292, A056293.
%K nonn
%O 1,6
%A _Marks R. Nester_