login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices of primes in sequence defined by A(0) = 77, A(n) = 10*A(n-1) + 27 for n > 0.
1

%I #30 Jan 17 2019 13:44:05

%S 1,3,27,155,321,351,1211,1283,7983,15191,84771,119929,148859

%N Indices of primes in sequence defined by A(0) = 77, A(n) = 10*A(n-1) + 27 for n > 0.

%C Numbers n such that (720*10^n - 27)/9 is a prime.

%C Numbers n such that digit 7 followed by n >= 0 occurrences of digit 9 followed by digit 7 is a prime.

%C Numbers corresponding to terms <= 1283 are certified primes. For larger numbers see P. De Geest, PDP Reference Table.

%D Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

%H Patrick De Geest, <a href="http://www.worldofnumbers.com/deplat.htm#pdp797">PDP Reference Table - 797</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/7/79997.htm#prime">Prime numbers of the form 799...997</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%F a(n) = A082716(n) - 2.

%e 797 is a prime, hence 1 is a term.

%o (PARI) a=77;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+27)

%o (PARI) for(n=0,1500,if(isprime((720*10^n-27)/9),print1(n,",")))

%Y Cf. A000533, A002275, A082716.

%K nonn,more

%O 1,2

%A _Robert G. Wilson v_, Aug 18 2000

%E Additional comments from _Klaus Brockhaus_ and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 03 2004

%E Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, Jun 08 2007

%E Update from De Geest link by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008

%E a(11)=84771 from _Ray Chandler_, Jan 04 2011

%E a(12)=119929 from _Ray Chandler_, Apr 01 2011

%E a(13)=148859 from _Ray Chandler_, Apr 09 2011

%E Updated comments section by _Patrick De Geest_, Nov 02 2014

%E Edited by _Ray Chandler_, Nov 04 2014