login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 51 for n > 0.
2

%I #24 Jan 17 2019 13:44:05

%S 0,3,11,15,17,35,51,71,99,6231,24027,40221,66393

%N Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 51 for n > 0.

%C Numbers n such that (150*10^n - 51)/9 is prime.

%C Numbers n such that digit 1 followed by n >= 0 occurrences of digit 6 followed by digit 1 is prime.

%C Numbers corresponding to terms <= 99 are certified primes.

%D Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

%H Patrick De Geest, <a href="http://www.worldofnumbers.com/deplat.htm#pdp161">PDP Reference Table - 161</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/1/16661.htm#prime">Prime numbers of the form 166...661</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%F a(n) = A082700(n-1) - 2 for n > 1.

%e 16661 is prime, hence 3 is a term.

%t Select[Range[0, 2000], PrimeQ[(150 10^# - 51) / 9] &] (* _Vincenzo Librandi_, Nov 03 2014 *)

%o (PARI) a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+51)

%o (PARI) for(n=0,1500,if(isprime((150*10^n-51)/9),print1(n,",")))

%Y Cf. A000533, A002275, A068647, A082700.

%K nonn,hard,more

%O 1,2

%A _Robert G. Wilson v_, Aug 18 2000

%E Additional comments from _Klaus Brockhaus_ and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004

%E Edited by _N. J. A. Sloane_, Jun 15 2007

%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008

%E Added one more term from the PDP table and a link, by _Patrick De Geest_, Nov 02 2014

%E Edited by _Ray Chandler_, Nov 04 2014