login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n divided by its characteristic cube divisor A056191.
6

%I #15 Nov 13 2022 08:39:28

%S 1,2,3,4,5,6,7,1,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,3,25,26,

%T 1,28,29,30,31,4,33,34,35,36,37,38,39,5,41,42,43,44,45,46,47,48,49,50,

%U 51,52,53,2,55,7,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,9,73,74,75

%N a(n) = n divided by its characteristic cube divisor A056191.

%C Different from A056552: e.g. a(16) = 16, while A056552(16) = 2.

%H Amiram Eldar, <a href="/A056192/b056192.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = n/A055229(n)^3 = n/g^3=n/ggg and n=(LL)*(ggg)*f=L^2*g^3*f=LL*a(n)^3*f, so n=L^2*(g*3)*f, where L=A000188(n)/A055229(n), f=A055231(n), g=A055231(n).

%F Multiplicative with a(p^e)=p^e for even e, a(p)=p, a(p^e)=p^(e-3) for odd e>1. - _Vladeta Jovovic_, Apr 30 2002

%F Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4 + 1/p^6 - 1/p^7) = 0.4462648652... . - _Amiram Eldar_, Nov 13 2022

%t f[p_, e_] := If[EvenQ[e], p^e, If[e == 1, p, p^(e - 3)]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 06 2020 *)

%Y Cf. A000188, A008833, A007913, A055229, A055231, A056552, A056191.

%K nonn,mult

%O 1,2

%A _Labos Elemer_, Aug 02 2000