login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 5-element ordered antichain covers of an unlabeled n-element set.
4

%I #19 Oct 07 2017 02:59:00

%S 30,2176,54036,709956,6290051,42606671,237197942,1135834242,

%T 4823607212,18563958502,65783057592,217240417628,674884181813,

%U 1987124979703,5579019610088,15010371955248,38862554420034,97163223921924,235290234202584,553296290481584

%N Number of 5-element ordered antichain covers of an unlabeled n-element set.

%D V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

%H G. C. Greubel, <a href="/A056093/b056093.txt">Table of n, a(n) for n = 4..1000</a>

%H K. S. Brown, <a href="http://www.mathpages.com/home/kmath515.htm">Dedekind's problem</a>

%H V. Jovovic, G. Kilibarda, <a href="http://dx.doi.org/10.4213/dm398">On the number of Boolean functions in the Post classes F^{mu}_8</a>, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.

%H V. Jovovic, G. Kilibarda, <a href="http://dx.doi.org/10.1515/dma.1999.9.6.593">On the number of Boolean functions in the Post classes F^{mu}_8</a>, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Cover.html">Antichain covers</a>

%F a(n)=C(n + 30, 30) - 20*C(n + 22, 22) + 60*C(n + 18, 18) + 20*C(n + 16, 16) + 10*C(n + 15, 15) - 110*C(n + 14, 14) - 120*C(n + 13, 13) + 150*C(n + 12, 12) + 120*C(n + 11, 11) - 240*C(n + 10, 10) + 20*C(n + 9, 9) + 240*C(n + 8, 8) + 40*C(n + 7, 7) - 205*C(n + 6, 6) + 60*C(n + 5, 5) - 210*C(n + 4, 4) + 210*C(n + 3, 3) + 50*C(n + 2, 2) - 100*C(n + 1, 1) + 24*C(n, 0).

%t Table[Binomial[n+30,30]-20 Binomial[n+22,22]+60 Binomial[n+18,18]+ 20 Binomial[n+16,16]+ 10 Binomial[n+15,15]-110 Binomial[n+14,14]- 120 Binomial[n+13,13]+ 150 Binomial[n+12,12]+ 120 Binomial[n+11,11]- 240 Binomial[n+10,10]+ 20 Binomial[n+9,9]+ 240 Binomial[n+8,8]+ 40 Binomial[n+7,7]- 205 Binomial[n+6,6]+ 60 Binomial[n+5,5]- 210 Binomial[n+4,4]+ 210 Binomial[n+3,3]+ 50 Binomial[n+2,2]- 100 Binomial[n+1,1]+ 24 Binomial[n,0],{n,4,30}] (* _Harvey P. Dale_, Sep 06 2011 *)

%Y Cf. A056048 for 5-antichain (unordered) covers of a labeled n-set, A051113. See also A056074, A056090.

%K nonn

%O 4,1

%A _Vladeta Jovovic_, Goran Kilibarda, Zoran Maksimovic, Jul 27 2000

%E More terms from _Harvey P. Dale_, Sep 06 2011