Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jun 14 2013 04:23:33
%S 25,454,3818,21420,92805,335152,1055944,2990020,7767357,18789070,
%T 42797602,92588216,191542842,381000192,731941256,1363109096,
%U 2468549141,4358716470,7520830306,12706161124,21054530855,34269633840,54863015040,86489873580,134406530985
%N Number of 4-element ordered antichains on an unlabeled n-element set; T_1-hypergraphs with 4 labeled nodes and n hyperedges.
%C T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.
%D V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
%D V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
%H T. D. Noe, <a href="/A056069/b056069.txt">Table of n, a(n) for n = 4..1000</a>
%H K. S. Brown, <a href="http://www.mathpages.com/home/kmath515.htm">Dedekind's problem</a>
%F a(n) = C(n + 15, 15) - 12*C(n + 11, 11) + 24*C(n + 9, 9) + 4*C(n + 8, 8) - 18*C(n + 7, 7) + 6*C(n + 6, 6) - 36*C(n + 5, 5) + 36*C(n + 4, 4) + 11*C(n + 3, 3) - 22*C(n + 2, 2) + 6*C(n + 1, 1).
%F Empirical G.f.: x^4*(6*x^10 -62*x^9 +271*x^8 -636*x^7 +800*x^6 -328*x^5 -495*x^4 +812*x^3 -446*x^2 +54*x +25)/(x-1)^16. [_Colin Barker_, May 29 2012]
%Y Cf. A051112 for 4-element (unordered) antichains on a labeled n-element set, A056005.
%K nonn
%O 4,1
%A _Vladeta Jovovic_, Goran Kilibarda, Jul 26 2000