login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let k be the largest number such that k^2 divides n! and let m be the largest number such that m!^2 divides n!; a(n) = k/m!.
3

%I #14 May 26 2024 08:37:20

%S 1,1,1,1,1,2,2,1,3,1,1,2,2,2,6,3,3,2,2,2,2,2,2,2,10,10,30,2,2,12,12,3,

%T 3,6,30,10,10,10,30,6,6,2,2,2,30,60,60,30,210,42,42,42,42,1,1,2,2,4,4,

%U 4,4,4,84,21,21,14,14,14,42,6,6,2,2,2,10,10,70,140,140,14,126,3,3,6,30

%N Let k be the largest number such that k^2 divides n! and let m be the largest number such that m!^2 divides n!; a(n) = k/m!.

%H Michael De Vlieger, <a href="/A056044/b056044.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A000188(n!)/A056038(n).

%e For n = 11, 11! = 6! * 6! * 77, so A000188(11!) = A056038(11) = 6! and a(11) = 6!/6! = 1.

%t f[p_, e_] := p^Floor[e/2]; b[1] = 1; b[n_] := Times @@ f @@@ FactorInteger[n!];

%t c[n_] := Module[{k = 1}, NestWhile[#/(++k)^2 &, n!, IntegerQ]; (k-1)!];

%t a[n_] := b[n] / c[n]; Array[a, 100] (* _Amiram Eldar_, May 24 2024 *)

%Y Cf. A000188, A055772, A001405, A001057, A056038.

%K nonn

%O 1,6

%A _Labos Elemer_, Jul 25 2000

%E Name corrected by _Amiram Eldar_, May 24 2024