login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = -2*a(n - 1) -a(n - 2) -a(n - 3), a(0) = a(1) = a(2) = 1.
4

%I #19 Oct 27 2023 22:00:46

%S 1,1,1,-4,6,-9,16,-29,51,-89,156,-274,481,-844,1481,-2599,4561,-8004,

%T 14046,-24649,43256,-75909,133211,-233769,410236,-719914,1263361,

%U -2217044,3890641,-6827599,11981601,-21026244,36898486,-64752329,113632416,-199410989,349941891,-614105209

%N a(n) = -2*a(n - 1) -a(n - 2) -a(n - 3), a(0) = a(1) = a(2) = 1.

%H Roger L. Bagula, <a href="https://web.archive.org/web/20010901155049/http://www.crosswinds.net/~translight/fib_double.html">Factoring Double Fibonacci Sequences, 2000</a> [Wayback Machine link from _Felix Fröhlich_, Nov 21 2019]

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-2,-1,-1).

%F O.g.f.: (1+3x+4x^2)/(1+2x+x^2+x^3). - _R. J. Mathar_, Aug 22 2008

%t LinearRecurrence[{-2,-1,-1},{1,1,1},40] (* _Harvey P. Dale_, Jun 09 2016 *)

%o (Magma) [n le 3 select 1 else -2*Self(n-1)-Self(n-2)-Self(n-3):n in [1..37]]; // _Marius A. Burtea_, Nov 21 2019

%K sign

%O 0,4

%A _Asher Auel_, Jun 06 2000

%E Inserted a(0) and a(1) by _R. J. Mathar_, Aug 23 2008