login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055894 Inverse Moebius transform of Pascal's triangle A007318. 2

%I

%S 1,1,1,2,2,2,2,3,3,2,3,4,8,4,3,2,5,10,10,5,2,4,6,18,22,18,6,4,2,7,21,

%T 35,35,21,7,2,4,8,32,56,78,56,32,8,4,3,9,36,87,126,126,87,36,9,3,4,10,

%U 50,120,220,254,220,120,50,10,4,2,11,55,165,330,462,462,330,165,55,11

%N Inverse Moebius transform of Pascal's triangle A007318.

%H G. C. Greubel, <a href="/A055894/b055894.txt">Table of n, a(n) for the first 101 rows, flattened</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%e Triangle starts:

%e [0] 1;

%e [1] 1, 1;

%e [2] 2, 2, 2;

%e [3] 2, 3, 3, 2;

%e [4] 3, 4, 8, 4, 3;

%e [5] 2, 5, 10, 10, 5, 2;

%e [6] 4, 6, 18, 22, 18, 6, 4;

%e [7] 2, 7, 21, 35, 35, 21, 7, 2;

%e [8] 4, 8, 32, 56, 78, 56, 32, 8, 4;

%e [9] 3, 9, 36, 87, 126, 126, 87, 36, 9, 3;

%e ...

%t T[n_, k_] := DivisorSum[GCD[k, n], Binomial[n/#, k/#] &]; T[0, 0] = 1; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-Fran├žois Alcover_, Dec 02 2015 *)

%o (PARI)

%o T(n,k) = if(n<=0, n==0, sumdiv(gcd(n,k), d, binomial(n/d,k/d) ) );

%o /* print triangle: */

%o { for (n=0, 17, for (k=0, n, print1(T(n,k),", "); ); print(); ); }

%o /* _Joerg Arndt_, Oct 21 2012 */

%Y Row sums give A055895.

%K nonn,tabl

%O 0,4

%A _Christian G. Bower_, Jun 09 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 13 16:50 EDT 2019. Contains 327968 sequences. (Running on oeis4.)