login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient triangle for certain polynomials.
11

%I #11 Jan 08 2018 21:02:19

%S 1,1,2,4,9,6,27,64,48,36,256,625,500,400,320,3125,7776,6480,5400,4500,

%T 3750,46656,117649,100842,86436,74088,63504,54432,823543,2097152,

%U 1835008,1605632,1404928,1229312,1075648,941192,16777216,43046721

%N Coefficient triangle for certain polynomials.

%C The coefficients of the partner polynomials are found in triangle A055864.

%F a(n, m)=0 if n < m; a(0, 0)=1, a(n, 0) = n^n, n >= 1, a(n, m) = n^(m-1)*(n+1)^(n-m+1), n >= m >= 1;

%F E.g.f. for column m: A(m, x); A(0, x) = 1/(1+W(-x)); A(1, x) = -1 - (d/dx)W(-x) = -1-W(-x)/((1+W(-x))*x); A(2, x) = A(1, x)-int(A(1, x), x)/x-(1/x+x); recursion: A(m, x) = A(m-1, x)-int(A(m-1, x), x)/x-((m-1)^(m-1))*(x^(m-1))/(m-1)!, m >= 3; W(x) principal branch of Lambert's function.

%e {1}; {1,2}; {4,9,6}; {27,64,48,36}; ...

%e Fourth row polynomial (n=3): p(3,x) = 27 + 64*x + 48*x^2 + 36*x^3.

%t a[n_, m_] /; n < m = 0; a[0, 0] = 1; a[n_, 0] := n^n; a[n_, m_] := n^(m-1)*(n+1)^(n-m+1); Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 20 2013 *)

%Y Column sequences are A000312(n), n >= 1, A055860 (A000169), A055861 (A053506), A055862-3 for m=0..4, row sums: A045531(n+1)= |A039621(n+1, 2)|, n >= 0.

%K easy,nonn,tabl

%O 0,3

%A _Wolfdieter Lang_, Jun 20 2000