Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 08 2022 08:45:01
%S 2,7,31,145,701,3458,17298,87417,445225,2281565,11750245,60763950,
%T 315315014,1641046720,8562466432,44775095601,234594444741,
%U 1231249999640,6472043549400,34067089542255,179543120927115
%N T(2n+2, n), where T is the array in A055830.
%H G. C. Greubel, <a href="/A055836/b055836.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = binomial(2*n+1,n) + Sum_{i=ceiling(n/2)..n} binomial(i+1,n-i+1)*binomial(n+i,n). - _Vladimir Kruchinin_, Nov 26 2014
%F a(n) = C(c+1,n-c+1)*C(n+c,n)*hypergeom([1,c+2,-n+c-1,n+c+1],[c+1,-n/2+c+1/2,-n/2+c+1],-1/4) where c=ceiling(n/2). - _Peter Luschny_, Nov 28 2014
%F Conjecture: 5*n*(n+1)*(7*n-5)*a(n) - n*(154*n^2+2*n-77)*a(n-1) - 3*(3*n-4)*(7*n+2)*(3*n-2)*a(n-2) = 0. - _R. J. Mathar_, Mar 13 2016
%t a[n_]:= Binomial[2n+1, n] + Sum[Binomial[i+1, n-i+1] Binomial[n+i, n], {i, Ceiling[n/2], n}];
%t Array[a, 21, 0] (* _Jean-François Alcover_, Jun 03 2019, after _Vladimir Kruchinin_ *)
%o (Maxima)
%o a(n):=binomial(2*n+1,n)+sum(binomial(i+1,n-i+1)*binomial(n+i,n),i,ceiling((n)/2),n); /* _Vladimir Kruchinin_, Nov 26 2014 */
%o (Sage)
%o def A055836(n):
%o c = ceil(n/2)
%o b = binomial(c+1,n-c+1)*binomial(n+c,n)
%o h = hypergeometric([1,c+2,-n+c-1,n+c+1],[c+1,-n/2+c+1/2,-n/2+c+1],-1/4)
%o return b*h.simplify_hypergeometric()
%o [A055836(n) for n in range(21)] # _Peter Luschny_, Nov 28 2014
%o (PARI) {a(n) = binomial(2*n+1,n) + sum(j=ceil(n/2), n, binomial(j+1, n-j+1)*binomial(n+j,n))}; \\ _G. C. Greubel_, Jun 09 2019
%o (Magma) [Binomial(2*n+1, n) + (&+[Binomial(j+1, n-j+1)*Binomial(n+j, n): j in [Ceiling(n/2)..n]]): n in [0..25]]; // _G. C. Greubel_, Jun 09 2019
%K nonn
%O 0,1
%A _Clark Kimberling_, May 28 2000