Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Aug 18 2017 09:44:29
%S 6,6,12,12,12,6,12,12,12,12,12,12,12,12,12,12,6,12,12,12,12,12,12,12,
%T 12,12,12,12,12,12,12,12,6,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
%U 12,12,12,12,6,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12
%N Number of Eisenstein-Jacobi primes of successive norms (indexed by A055664).
%C These are the primes in the ring of integers a+b*omega, a and b rational integers, omega = (1+sqrt(-3))/2.
%D R. K. Guy, Unsolved Problems in Number Theory, A16.
%D L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI.
%H Antti Karttunen, <a href="/A055665/b055665.txt">Table of n, a(n) for n = 1..1000</a> (computed from the b-file of A055666 with the formula of _Franklin T. Adams-Watters_)
%F a(n) = 6 * A055666(n) - _Franklin T. Adams-Watters_, May 05 2006
%e There are 6 Eisenstein-Jacobi primes of norm 3, omega-omega^2 times one of the 6 units [ +-1, +-omega, +-omega^2 ] but only one up to equivalence.
%t norms = Join[{3}, Select[Range[1000], (PrimeQ[#] && Mod[#, 6] == 1) || (PrimeQ[Sqrt[#]] && Mod[Sqrt[#], 3] == 2) &]]; r[n_] := Reduce[n == a^2 - a*b + b^2, {a, b}, Integers] // Length; A055665 = r /@ norms (* _Jean-François Alcover_, Oct 24 2013 *)
%Y Cf. A055664-A055668, A055025-A055029. See A004016 and A035019 for theta series of Eisenstein (or hexagonal) lattice.
%K nonn,easy,nice
%O 1,1
%A _N. J. A. Sloane_, Jun 09 2000
%E More terms from _Franklin T. Adams-Watters_, May 05 2006