login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A*10^(4*n+1)+B with A=99000*(10^(4*n)-1)/9999+10 and B=9900*(10^(4*n)-1)/9999+1.
2

%I #16 Jul 02 2023 15:45:03

%S 9901009901,990099010099009901,99009900990100990099009901,

%T 9900990099009901009900990099009901,

%U 990099009900990099010099009900990099009901

%N a(n) = A*10^(4*n+1)+B with A=99000*(10^(4*n)-1)/9999+10 and B=9900*(10^(4*n)-1)/9999+1.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (100010001, -1000100010000, 1000000000000).

%F a(n) = ( 100^(2*n+1) + 1 )^2 / 101. [_Bruno Berselli_, Jul 23 2013]

%F G.f.: 101*x*(98029801-1000000010000*x+1000000000000*x^2)/((1-x)*(1-10000*x)*(1-100000000*x)). [_Bruno Berselli_, Jul 23 2013]

%e a(2) = (99000*(10^8-1)/9999+10)*10^9+9900*(10^8-1)/9999+1 = 990099010099009901.

%e Note that 990099010099009901 = 990099010^2+099009901^2.

%t Table[(100^(2 n + 1) + 1)^2/101, {n, 5}] (* _Bruno Berselli_, Jul 23 2013 *)

%o (PARI) a(n) = (99000*(10^(4*n)-1)/9999+10)*10^(4*n+1)+9900*(10^(4*n)-1)/9999+1 \\ _Michel Marcus_, Jul 23 2013

%o (Magma) [(100^(2*n+1)+1)^2/101: n in [1..5]]; // _Bruno Berselli_, Jul 23 2013

%Y Subsequence of A055616.

%K nonn,easy

%O 1,1

%A Ulrich Schimke (ulrschimke(AT)aol.com)