The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055616 Numbers, with an even number of digits, that are the sum of the squares of their two halves (leading zeros allowed only for the second half). 10

%I

%S 1233,8833,990100,94122353,1765038125,2584043776,7416043776,

%T 8235038125,9901009901,116788321168,123288328768,876712328768,

%U 883212321168,999900010000,13793103448276,15348303604525,84651703604525,86206903448276,91103202846976,92318202663025

%N Numbers, with an even number of digits, that are the sum of the squares of their two halves (leading zeros allowed only for the second half).

%C The sequence is infinite since it contains several infinite subsequences (see A055617, etc.).

%C If x = A*10^n+B is an element not beginning with 9, then (10^n-A)*10^n+B is another (e.g. 1233 <-> 8833).

%C Numbers that can be written as n = A*10^d + B with 10^(d-1) <= A < 10^d, 0 <= B < 10^d, and A^2 + B^2 = n. - _Robert Israel_, May 10 2015

%H Robert Israel, <a href="/A055616/b055616.txt">Table of n, a(n) for n = 1..1000</a>

%e 8833 is ok, since 8833 = 88^2 + 33^2.

%p dmax:= 8: # to get all entries with at most 2*dmax digits

%p Res:= NULL:

%p for d from 2 to dmax do

%p cands:= map(t -> subs(t,[x,y]), [isolve(x^2 + y^2 = 10^(2*d)+1)]);

%p cands:= select(t -> t::even and t>=0 and t>0, cands);

%p cands:= map(t -> ([(10^d + t)/2, (t+1)/2], [(10^d-t)/2, (t+1)/2]), cands);

%p cands:= select(t -> (t>= 10^(d-1) and t < 10^d and t <= 10^d), cands);

%p Res:= Res, op(map(t -> 10^d*t+t, cands));

%p od:

%p sort([Res]); # _Robert Israel_, May 10 2015

%t fQ[n_] := Block[{d = IntegerDigits@ n}, If[OddQ[Length@ d], False, Plus[FromDigits[Take[d, Length[d]/2]]^2, FromDigits[Take[d, -Length[d]/2]]^2]] == n]; Select[Range@ 1000000, fQ] (* _Michael De Vlieger_, May 09 2015 *)

%o (Python)

%o def a():

%o ..n = 1

%o ..while n < 10**6:

%o ....st = str(n)

%o ....if len(st) % 2 == 0:

%o ......s1 = st[:int(len(st)/2)]

%o ......s2 = st[int(len(st)/2):int(len(st))]

%o ......if int(s1)**2+int(s2)**2 == int(st):

%o ........print(n,end=', ')

%o ........n += 1

%o ......else:

%o ........n += 1

%o ....else:

%o ......n = 10*n

%o a()

%o # _Derek Orr_, Jul 08 2014

%Y Cf. A064942 for the number of solutions, where leading zeros are allowed.

%Y Cf. A055617, A055618, A055619.

%K nonn,base

%O 1,1

%A Ulrich Schimke (ulrschimke(AT)aol.com)

%E Definition corrected by _Derek Orr_, Jul 09 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 26 04:54 EDT 2021. Contains 348256 sequences. (Running on oeis4.)