login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{m=1..n} (binomial(n,m)+1).
6

%I #17 Apr 26 2024 02:24:06

%S 1,2,6,32,350,8712,526848,80289792,31428168318,31906468445000,

%T 84447578671097576,584524457418427932672,10604795873304968964262400,

%U 505245441738743508813986275328,63320582170435750241601032951040000,20908669294849228879861552351685432573952

%N a(n) = Product_{m=1..n} (binomial(n,m)+1).

%D V. K. Kharchenko, Fixed rings and noncommutative invariant theory, pp. 359-398 of M. Hazewinkel, ed., Handbook of Algebra, Vol. 2, Elsevier, 2000.

%H Reinhard Zumkeller, <a href="/A055612/b055612.txt">Table of n, a(n) for n = 0..69</a>

%F a(n) = A129824(n) / 2. - _Reinhard Zumkeller_, Jan 31 2015

%t Array[Product[1 + Binomial[#, m], {m, #}] &, 16, 0] (* _Michael De Vlieger_, Oct 30 2017 *)

%o (Haskell)

%o a055612 = product . map (+ 1) . tail . a007318_row

%o -- _Reinhard Zumkeller_, Jan 31 2015

%o (PARI) a(n) = prod(m=1, n, 1+binomial(n, m)); \\ _Michel Marcus_, Oct 30 2017

%Y Cf. A007318, A217716, A293954, A293955.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Jun 03 2000