login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X n binary matrices with no zero rows or columns and with n+2 ones.
4

%I #9 Jul 12 2018 05:38:46

%S 0,1,90,2248,43000,755100,13003620,226262400,4037765760,74481120000,

%T 1425927888000,28389466828800,588245898240000,12685887076262400,

%U 284623499160000000,6639289429893120000,160886197351047168000,4046412223559946240000,105527367894862577664000

%N Number of n X n binary matrices with no zero rows or columns and with n+2 ones.

%F Number of m X n binary matrices with no zero rows or columns and with k=0..m*n ones is Sum_{i=0..n} (-1)^i*C(n, i)*a(m, n-i, k) where a(m, n, k)=Sum_{i=0..m} (-1)^i*C(m, i)*C((m-i)*n, k).

%F a(n) = n*(n-1)*(9*n^4+42*n^3+7*n^2-122*n-120)*n!/576. - _Vladeta Jovovic_, Mar 25 2006

%Y A diagonal of triangle A104601.

%Y Cf. A055602.

%K nonn

%O 1,3

%A _Vladeta Jovovic_, Jun 01 2000

%E More terms from _Vaclav Kotesovec_, Jul 12 2018