login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) read by rows, giving the number of n X n binary matrices with no zero rows or columns and with k=0..n^2 ones.
6

%I #43 Mar 30 2024 11:36:23

%S 0,1,0,0,2,4,1,0,0,0,6,45,90,78,36,9,1,0,0,0,0,24,432,2248,5776,9066,

%T 9696,7480,4272,1812,560,120,16,1,0,0,0,0,0,120,4200,43000,222925,

%U 727375,1674840,2913100,3995100,4441200,4073100,3114140,1994550

%N Triangle T(n,k) read by rows, giving the number of n X n binary matrices with no zero rows or columns and with k=0..n^2 ones.

%C Rows also give the coefficients of the edge cover polynomials of the complete bipartite graph K_{n,n}. - _Eric W. Weisstein_, Apr 24 2017

%H H. Cheballah, S. Giraudo, and R. Maurice, <a href="http://arxiv.org/abs/1306.6605">Combinatorial Hopf algebra structure on packed square matrices</a>, arXiv preprint arXiv:1306.6605 [math.CO], 2013.

%H Stephan Mertens, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL27/Mertens/mertens6.html">Domination Polynomial of the Rook Graph</a>, JIS 27 (2024) 24.3.7; <a href="https://arxiv.org/abs/2401.00716">arXiv:2401.00716</a> [math.CO], 2024.

%H Roberto Tauraso, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Tauraso/tauraso18.html">Edge cover time for regular graphs</a>, JIS 11 (2008) 08.4.4

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EdgeCoverPolynomial.html">Edge Cover Polynomial</a>

%F Number of m X n binary matrices with no zero rows or columns and with k=0..m*n ones is Sum_{i=0..n} (-1)^i*C(n, i)*a(m, n-i, k) where a(m, n, k)=Sum_{i=0..m} (-1)^i*C(m, i)*C((m-i)*n, k).

%F G.f. for n-th row: Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*((1+x)^k-1)^n. - _Vladeta Jovovic_, Apr 04 2003

%F E.g.f.: Sum(((1+y)^n-1)^n*exp((1-(1+y)^n)*x)*x^n/n!,n=0..infinity). - _Vladeta Jovovic_, Feb 24 2008

%e For m=n=3 we get T(3,k)=C(9,k)-6*C(6,k)+9*C(4,k)+6*C(3,k)-18*C(2,k)+9*C(1,k)-C(0,k) giving the batch [0,0,0,6,45,90,78,36,9,1].

%e Triangle begins:

%e 0, 1,

%e 0, 0, 2, 4, 1,

%e 0, 0, 0, 6, 45, 90, 78, 36, 9, 1,

%e 0, 0, 0, 0, 24, 432, 2248, 5776, 9066, 9696, 7480, 4272, 1812, 560, 120, 16, 1,

%e ...

%t row[n_] := Sum[(-1)^(n-k) Binomial[n, k] ((1+x)^k - 1)^n, {k, 0, n}] + O[x]^(n^2+1) // CoefficientList[#, x]&;

%t Table[row[n], {n, 1, 5}] // Flatten (* _Jean-François Alcover_, Nov 06 2018 *)

%Y Cf. A048291 (row sums).

%K nonn,tabf

%O 1,5

%A _Vladeta Jovovic_, Jun 01 2000