Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jul 12 2024 10:16:58
%S 0,0,1,3,5,6,7,10,10,11,12,14,16,17,17,21,25,26,27,29,29,30,31,34,34,
%T 35,35,37,39,40,41,46,46,47,47,49,51,52,52,55,58,59,60,62,62,63,64,68,
%U 68,69,69,71,73,74,74,77,77,78,79,81,83,84,84,90,90,91,92,94,94,95,96
%N Exponent of the highest power of 2 dividing phi(n!).
%H Amiram Eldar, <a href="/A055597/b055597.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A007814(A048855(n)) = A007814(A000010(n!)).
%e For n=8, 8! = 40320 = 128*315, phi(40320) = 9216 = 9*1024, so a(8)=10, while the exponent of 2 in 8! is only 7. Exponents of 2 are larger in phi(n!) than in n!.
%t a[n_] := IntegerExponent[EulerPhi[n!], 2]; Array[a, 100] (* _Amiram Eldar_, Jul 12 2024 *)
%o (Python)
%o from math import factorial, prod
%o from sympy import primerange
%o from fractions import Fraction
%o def A055597(n): return (~(m:=(factorial(n)*prod(Fraction(p-1,p) for p in primerange(n+1))).numerator)&m-1).bit_length() # _Chai Wah Wu_, Jul 06 2022
%o (PARI) a(n) = valuation(eulerphi(n!), 2); \\ _Amiram Eldar_, Jul 12 2024
%Y Cf. A000010, A000720, A007814, A011371, A048855.
%K nonn
%O 1,4
%A _Labos Elemer_, Jul 11 2000
%E Name clarified by _Amiram Eldar_, Jul 12 2024