login
A055482
There exists some k>0 such that n is the product of (k + digits of n).
5
12, 18, 24, 35, 50, 56, 90, 120, 210, 315, 450, 780, 840, 1500, 3920, 4320, 4752, 7744, 16500, 24960, 57915, 59400, 60480, 91728, 269500, 493920, 917280, 1293600, 2419200, 3386880, 34992000, 266378112, 317447424, 1277337600, 3714984000, 14948388000, 48697248600, 460522782720, 896168448000
OFFSET
1,1
COMMENTS
18 appears to be the only term with k=1, there are no other terms with k=1 as well as with k=3,8,9 below 10^100. - Max Alekseyev, Jan 25 2015
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..59 (terms < 10^38)
EXAMPLE
4752 = (4+4)(4+7)(4+5)(4+2).
MATHEMATICA
L={}; Do[Print@ n; Do[p = Reverse/@ IntegerPartitions[ k, {n}, Range[0, 9]]; Do[z = Times@@ (e + k); If[ Sort@ IntegerDigits@ z == e, Print[{z, k}]; AppendTo[L, z]], {k, 9}, {e, p}], {k, 9*n}], {n, 2, 13}]; Sort@ L (* terms < 10^13, Giovanni Resta, Jul 24 2015 *)
CROSSREFS
Subsequences: A098113 (k=2), A098114 (k=4), A097371 (k=5), A097372 (k=6), A115227 (k=7)
Sequence in context: A206449 A241852 A113756 * A284342 A362844 A198470
KEYWORD
base,nonn
AUTHOR
Erich Friedman, Jun 27 2000
EXTENSIONS
Offset corrected and more terms added by Max Alekseyev, Jan 23 2015
STATUS
approved