login
Numbers that are the sum of a positive square and a positive cube.
51

%I #43 Nov 02 2023 08:39:31

%S 2,5,9,10,12,17,24,26,28,31,33,36,37,43,44,50,52,57,63,65,68,72,73,76,

%T 80,82,89,91,100,101,108,113,122,126,127,128,129,134,141,145,148,150,

%U 152,161,164,170,171,174,177,185,189,196,197,204,206,208,217,220,223

%N Numbers that are the sum of a positive square and a positive cube.

%C This sequence was the subject of a question in the German mathematics competition Bundeswettbewerb Mathematik 2017 (see links). The second round contained a question A4 which asks readers to "Show that there are an infinite number of a such that a-1, a, and a+1 are members of A055394". - _N. J. A. Sloane_, Jul 04 2017 and Oct 14 2017

%C This sequence was also the subject of a question in the 22nd All-Russian Mathematical Olympiad 1996 (see link). The 1st question of the final round for Grade 9 asked competitors "What numbers are more frequent among the integers from 1 to 1000000: those that can be written as a sum of a square and a positive cube, or those that cannot be?" Answer is that there are more numbers not of this form. - _Bernard Schott_, Feb 18 2022

%H Charles R Greathouse IV, <a href="/A055394/b055394.txt">Table of n, a(n) for n = 1..10000</a>

%H Bundeswettbewerb Mathematik 2017, <a href="https://www.mathe-wettbewerbe.de/bwm/bwm-wettbewerb-1">Der Wettbewerb in der 47 Runde</a>

%H Bundeswettbewerb Mathematik 2017, <a href="https://www.mathe-wettbewerbe.de/fileadmin/Mathe-Wettbewerbe/Bundeswettbewerb_Mathematik/Dokumente/Aufgaben_und_Loesungen_BWM/loes_17_2_e.pdf">Aufgaben und Lösungen</a>

%H The IMO Compendium, <a href="https://imomath.com/othercomp/Rus/RusMO96.pdf"> Problem 1</a>, 22nd All-Russian Mathematical Olympiad 1996.

%H <a href="/index/O#Olympiads">Index to sequences related to Olympiads and other Mathematical competitions</a>.

%F a(n) >> n^(6/5). - _Charles R Greathouse IV_, May 15 2015

%e a(5)=17 since 17=3^2+2^3.

%p isA055394 := proc(n)

%p local a,b;

%p for b from 1 do

%p if b^3 >= n then

%p return false;

%p end if;

%p asqr := n-b^3 ;

%p if asqr >= 0 and issqr(asqr) then

%p return true;

%p end if;

%p end do:

%p return;

%p end proc:

%p for n from 1 to 1000 do

%p if isA055394(n) then

%p printf("%d,",n) ;

%p end if;

%p end do: # _R. J. Mathar_, Dec 03 2015

%t r[n_, y_] := Reduce[x > 0 && n == x^2 + y^3, x, Integers]; ok[n_] := Catch[Do[If[r[n, y] =!= False, Throw[True]], {y, 1, Ceiling[n^(1/3)]}]] == True; Select[Range[300], ok] (* _Jean-François Alcover_, Jul 16 2012 *)

%t solQ[n_] := Length[Reduce[p^2 + q^3 == n && p > 0 && q > 0, {p, q}, Integers]] > 0; Select[Range[224], solQ] (* _Jayanta Basu_, Jul 11 2013 *)

%t isQ[n_] := For[k = 1, k <= (n-1)^(1/3), k++, If[IntegerQ[Sqrt[n-k^3]], Return[True]]; False];

%t Select[Range[1000], isQ] (* _Jean-François Alcover_, Apr 06 2021, after _Charles R Greathouse IV_ *)

%o (PARI) list(lim)=my(v=List()); for(n=1,sqrtint(lim\1-1), for(m=1,sqrtnint(lim\1-n^2,3), listput(v,n^2+m^3))); Set(v) \\ _Charles R Greathouse IV_, May 15 2015

%o (PARI) is(n)=for(k=1,sqrtnint(n-1,3), if(issquare(n-k^3), return(1))); 0 \\ _Charles R Greathouse IV_, May 15 2015

%Y Cf. A022549, A055393, A078360. Complement of A066650.

%K easy,nonn

%O 1,1

%A _Henry Bottomley_, May 12 2000