login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: number of mobiles (circular rooted trees) with n nodes and k leaves.
12

%I #22 Oct 02 2019 10:51:26

%S 1,1,0,1,1,0,1,2,1,0,1,4,3,1,0,1,6,8,4,1,0,1,9,19,16,5,1,0,1,12,37,46,

%T 25,6,1,0,1,16,66,118,96,40,7,1,0,1,20,110,260,300,184,56,8,1,0,1,25,

%U 172,527,811,688,318,80,9,1,0,1,30,257,985,1951,2178,1408,524,105,10,1,0

%N Triangle read by rows: number of mobiles (circular rooted trees) with n nodes and k leaves.

%H Andrew Howroyd, <a href="/A055340/b055340.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows)

%H C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>

%H <a href="/index/Mo#mobiles">Index entries for sequences related to mobiles</a>

%F G.f. satisfies A(x, y)=xy+x*CIK(A(x, y))-x. Shifts up under CIK transform.

%F G.f. satisfies A(x, y) = x*(y - Sum_{i>0} phi(i)/i * log(1 - A(x^i, y^i))). - _Michael Somos_, Aug 24 2015

%F Sum_k T(n, k) = A032200(n). - _Michael Somos_, Aug 24 2015

%e G.f. = x^(y + x*y + x^2*(y + y^2) + x^3*(y + 2*y^2 + y^3) + x^4*(y + 4*y^2 + 3*y^3 + y^4) + ...).

%e n\k 1 2 3 4 5 6 7 8

%e --:-- -- -- -- -- -- -- --

%e 1: 1

%e 2: 1 0

%e 3: 1 1 0

%e 4: 1 2 1 0

%e 5: 1 4 3 1 0

%e 6: 1 6 8 4 1 0

%e 7: 1 9 19 16 5 1 0

%e 8: 1 12 37 46 25 6 1 0

%t m = 13; A[_, _] = 0;

%t Do[A[x_, y_] = x (y - Sum[EulerPhi[i]/i Log[1 - A[x^i, y^i]], {i, 1, m}]) + O[x]^m + O[y]^m // Normal, {m}];

%t Join[{1}, Append[CoefficientList[#/y, y], 0]& /@ Rest @ CoefficientList[ A[x, y]/x, x]] // Flatten (* _Jean-François Alcover_, Oct 02 2019 *)

%o (PARI) {T(n, k) = my(A = O(x)); if(k<1 || k>n, 0, for(j=1, n, A = x*y - x*sum(i=1, j, eulerphi(i)/i * log(1 - subst( subst( A + x * O(x^min(j, n\i)), x, x^i), y, y^i) ) )); polcoeff( polcoeff(A, n), k))}; /* _Michael Somos_, Aug 24 2015 */

%Y Row sums give A032200.

%Y Columns 2..8 are A002620(n-1), A055341, A055342, A055343, A055344, A055345, A055346.

%Y Cf. A055347, A055348, A055349, A055356, A055363.

%K nonn,tabl,eigen

%O 1,8

%A _Christian G. Bower_, May 14 2000