Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Nov 10 2023 10:55:09
%S 2,11,40,109,254,524,998,1774,2995,4833,7525,11346,16659,23877,33528,
%T 46203,62637,83643,110213,143432,184600,235129,296687,371072,460382,
%U 566866,693121,841917,1016422,1220001,1456473,1729878,2044767,2405940
%N Number of rooted identity trees with n nodes and 4 leaves.
%H Andrew Howroyd, <a href="/A055329/b055329.txt">Table of n, a(n) for n = 8..1000</a>
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-4,3,-1,3,0,-3,1,-3,4,1,-3,1).
%F G.f.: x^8*(2+5*x+9*x^2+8*x^3+5*x^4+x^6)/((1-x)^7*(1+x)^3*(1+x^2)*(1+x+x^2)) - _Colin Barker_, Nov 07 2012
%F a(n) = -[n=0] + (60*n^6 -1236*n^5 +9450*n^4 -33520*n^3 +59940*n^2 -66294*n +48065)/69120 +(-1)^n*(4*n^2 -38*n +89)/512 +(3/32)*(-1)^floor((n+1)/2) + ChebyshevU(n, -1/2)/27. - _G. C. Greubel_, Nov 09 2023
%t Drop[CoefficientList[Series[x^8*(2+5*x+9*x^2+8*x^3+5*x^4+x^6)/((1-x)^3*(1-x^2)^2*(1-x^3)*(1-x^4)), {x,0,50}], x], 8] (* _G. C. Greubel_, Nov 09 2023 *)
%o (PARI) Vec((2 + 5*x + 9*x^2 + 8*x^3 + 5*x^4 + x^6)/((1 - x)^7*(1 + x)^3*(1 + x^2)*(1 + x + x^2)) + O(x^40)) \\ _Andrew Howroyd_, Aug 28 2018
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( x^8*(2+5*x+9*x^2+8*x^3+5*x^4+x^6)/((1-x)^3*(1-x^2)^2*(1-x^3)*(1-x^4)) )); // _G. C. Greubel_, Nov 09 2023
%o (SageMath)
%o def A055329_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( x^8*(2+5*x+9*x^2+8*x^3+5*x^4+x^6)/((1-x)^3*(1-x^2)^2*(1-x^3)*(1-x^4)) ).list()
%o a=A055329_list(50); a[8:] # _G. C. Greubel_, Nov 09 2023
%Y Column 4 of A055327.
%K nonn,easy
%O 8,1
%A _Christian G. Bower_, May 12 2000