Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 08 2022 08:45:01
%S 13,372554,714236250,453911421600,156507084115200,36555247168352640,
%T 6528715119143118720,960135043767367104000,122086105154945279712000,
%U 13885903109630633425344000,1447862009053077400092710400,140958354488116955062668595200
%N Number of labeled trees with n nodes and 12 leaves.
%H Vincenzo Librandi, <a href="/A055324/b055324.txt">Table of n, a(n) for n = 13..200</a>
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F a(n) = (n!/12!)*Stirling2(n-2, n-12). - _Vladeta Jovovic_, Jan 28 2004
%F a(n) = n! * (n-12)*(n-11)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(99*n^9 - 9207*n^8 + 377586*n^7 - 8955870*n^6 + 135276603*n^5 - 1348112183*n^4 + 8853485696*n^3 - 36897359092*n^2 + 88399944688*n - 92577669120) / 176211865192366080000. - _Vaclav Kotesovec_, Jul 25 2014
%t Table[n! * (n-12)*(n-11)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(99*n^9 - 9207*n^8 + 377586*n^7 - 8955870*n^6 + 135276603*n^5 - 1348112183*n^4 + 8853485696*n^3 - 36897359092*n^2 + 88399944688*n - 92577669120) / 176211865192366080000,{n,13,25}] (* _Vaclav Kotesovec_, Jul 25 2014 *)
%t Table[(n!/12!)*StirlingS2[n-2, n-12], {n,13, 30}] (* _G. C. Greubel_, Feb 07 2018 *)
%o (Magma) [Factorial(n)*(n-12)*(n-11)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(99*n^9 - 9207*n^8 + 377586*n^7 - 8955870*n^6 + 135276603*n^5 - 1348112183*n^4 + 8853485696*n^3 - 36897359092*n^2 + 88399944688*n - 92577669120) / 176211865192366080000: n in [13..25]]; // _Vincenzo Librandi_, Jul 25 2014
%o (PARI) for(n=13, 30, print1((n!/12!)*stirling(n-2, n-12, 2), ", ")) \\ _G. C. Greubel_, Feb 07 2018
%o (Magma) [(Factorial(n)/Factorial(12))*StirlingSecond(n-2, n-12): n in [13..30]]; // _G. C. Greubel_, Feb 07 2018
%Y Column 12 of A055314.
%K nonn
%O 13,1
%A _Christian G. Bower_, May 11 2000
%E Missing a(24) inserted by _Andrew Howroyd_, Feb 23 2018