Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Aug 14 2024 01:53:53
%S 1,3,0,12,4,0,60,60,5,0,360,720,210,6,0,2520,8400,5250,630,7,0,20160,
%T 100800,109200,30240,1736,8,0,181440,1270080,2116800,1058400,151704,
%U 4536,9,0,1814400,16934400,40219200,31752000,8573040,695520,11430,10,0
%N Triangle T(n,k) read by rows: number of labeled trees with n nodes and k leaves, n >= 2, 2 <= k <= n.
%D Moon, J. W. Various proofs of Cayley's formula for counting trees. 1967 A seminar on Graph Theory pp. 70--78 Holt, Rinehart and Winston, New York; MR0214515 (35 #5365). - From _N. J. A. Sloane_, Jun 07 2012
%D Renyi, Alfred. Some remarks on the theory of trees. Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 1959 73--85. MR0115938 (22 #6735). - From _N. J. A. Sloane_, Jun 07 2012
%D D. Stanton and D. White, Constructive Combinatorics, Springer, 1986; see p. 67.
%H G. C. Greubel, <a href="/A055314/b055314.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A. M. Hamel, <a href="http://dx.doi.org/10.1007/s000260300004">Priority queue sorting and labeled trees</a>, Annals Combin., 7 (2003), 49-54.
%H F. Harary, A. Mowshowitz and J. Riordan, <a href="https://doi.org/10.1016/S0021-9800(69)80106-7">Labeled trees with unlabeled end-points</a>, J. Combin. Theory, 6 (1969), 60-64. - From _N. J. A. Sloane_, Jun 07 2012
%H Vites Longani, <a href="http://dx.doi.org/10.1016/j.camwa.2008.07.011">A formula for the number of labelled trees</a>, Comp. Math. Appl. 56 (2008) 2786-2788.
%H John Riordan, <a href="https://doi.org/10.1090/S0002-9904-1966-11442-8">The enumeration of labeled trees by degrees</a>, Bull. Amer. Math. Soc. 72 1966 110--112. MR0186583 (32 #4042). - From _N. J. A. Sloane_, Jun 07 2012
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F E.g.f.: A(x, y)=(1-x+x*y)*B(x, y)-B(x, y)^2/2. B(x, y): e.g.f. of A055302.
%F T(n, k) = binomial(n+1, k)*Sum( binomial(n+1-k, i)*(-1)^(n+1-k-i)*i^(n-1), i=0..n+1-k).
%F T(n, k) = (n!/k!)*Stirling2(n-2, n-k). - _Vladeta Jovovic_, Jan 28 2004
%e Triangle T(n,k) begins:
%e 1;
%e 3, 0;
%e 12, 4, 0;
%e 60, 60, 5, 0;
%e 360, 720, 210, 6, 0;
%e 2520, 8400, 5250, 630, 7, 0;
%e ...
%p T := (n,k) -> binomial(n+1,k)*add( binomial(n+1-k,i)*(-1)^(n+1-k-i)*i^(n-1), i=0..n+1-k);
%p # The following version gives the triangle for any n>=1, k>=1, based on the Harary et al. (1969) paper - _N. J. A. Sloane_, Jun 07 2012
%p with(combinat);
%p R:=proc(n,k)
%p if n=1 then if k=1 then RETURN(1) else RETURN(0); fi
%p elif (n=2 and k=2) then RETURN(1)
%p elif (n=2 and k>2) then RETURN(0)
%p else stirling2(n-2,n-k)*n!/k!;
%p fi;
%p end;
%t Table[Table[Binomial[n,k] Sum[(-1)^j Binomial[n-k,j] (n-k-j)^(n-2),{j,0,n-k}],{k,2,n-1}],{n,2,10}]//Grid (* _Geoffrey Critzer_, Nov 12 2011 *)
%t Table[(n!/k!)*StirlingS2[n - 2, n - k], {n, 2, 7}, {k, 2, n}]//Flatten (* _G. C. Greubel_, May 17 2017 *)
%o (Maxima) A055314(n,k) := block(
%o n!/k!*stirling2(n-2,n-k)
%o )$
%o for n : 2 thru 10 do
%o for k : 2 thru n do
%o print(A055314(n,k)," ") ; /* _R. J. Mathar_, Mar 06 2012 */
%o (PARI) for(n=2,20, for(k=2,n, print1((n!/k!)*stirling(n-2, n-k, 2), ", "))) \\ _G. C. Greubel_, May 17 2017
%Y Cf. A000272.
%Y Row sums give A000272. Columns 2 through 12: A001710, A055315-A055324.
%K nonn,tabl
%O 2,2
%A _Christian G. Bower_, May 11 2000