Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Feb 11 2021 04:59:33
%S 2,10,18,82,90,162,730,738,810,1458,6562,6570,6642,7290,13122,59050,
%T 59058,59130,59778,65610,118098,531442,531450,531522,532170,538002,
%U 590490,1062882,4782970,4782978,4783050,4783698,4789530,4842018,5314410,9565938,43046722
%N Sums of two powers of 9.
%H T. D. Noe, <a href="/A055260/b055260.txt">Rows n = 0..100 of triangle, flattened</a>
%F a(n) = 9^(n-trinv(n))+9^trinv(n), where trinv(n) = floor((1+sqrt(1+8*n))/2) = A002262(n) and n-trinv(n) = A003056(n)
%F Regarded as a triangle T(n, k) = 9^n + 9^k, so as a sequence a(n) = 9^A002262(n) + 9^A003056(n).
%t t = 9^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* _T. D. Noe_, Oct 09 2011 *)
%t Total/@Tuples[9^Range[0,10],2]//Union (* _Harvey P. Dale_, Jul 03 2019 *)
%o (Python)
%o def valuation(n, b):
%o v = 0
%o while n > 1: n //= b; v += 1
%o return v
%o def aupto(lim):
%o pows = [9**i for i in range(valuation(lim-1, 9) + 1)]
%o sum_pows = sorted([a+b for i, a in enumerate(pows) for b in pows[i:]])
%o return [s for s in sum_pows if s <= lim]
%o print(aupto(43046722)) # _Michael S. Branicky_, Feb 10 2021
%Y Cf. A001019, A052216.
%K easy,nonn,tabl
%O 0,1
%A _Henry Bottomley_, Jun 22 2000