login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of certain stackings of n+1 squares on a double staircase.
8

%I #36 Aug 09 2024 11:49:36

%S 1,1,3,6,12,23,43,79,143,256,454,799,1397,2429,4203,7242,12432,21271,

%T 36287,61739,104791,177476,299978,506111,852457,1433593,2407443,

%U 4037454,6762708,11314391,18909139,31569799,52657247,87751624

%N Number of certain stackings of n+1 squares on a double staircase.

%C a(n)= G_{n+1} of Turban reference eq.(3.9).

%C Equals A046854 * [1,2,3,...]. - _Gary W. Adamson_, Dec 23 2008

%C (1 + x + 3x^2 + 6x^3 + ...) = (1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + ...) * (1 + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 + ...). -_Gary W. Adamson_, Jul 27 2010

%C Column 1 of A194540. - _R. H. Hardin_, Aug 28 2011

%D L. Turban, Lattice animals on a staircase and Fibonacci numbers, J.Phys. A 33 (2000) 2587-2595.

%H Vincenzo Librandi, <a href="/A055244/b055244.txt">Table of n, a(n) for n = 0..1000</a>

%H Arnold Adelberg and Tamás Lengyel, <a href="https://www.researchgate.net/profile/Arnold-Adelberg/publication/382731171_NEW_RESULTS_ON_THE_2-ADIC_VALUATION_OF_THE_CENTRAL_STIRLING_NUMBERS_S2K_K/">New results on the 2-adic valuation of the central Stirling numbers S(2k, k)</a>, Harvey Mudd College (2024).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2,-1).

%F G.f.: (1-x+x^3)/(1-x-x^2)^2. (from Turban reference eq.(3.3) with t=1).

%F a(n) = ((n+5)*F(n+1)+(2*n-3)*F(n))/5 with F(n)=A000045(n) (Fibonacci numbers) (from Turban reference eq.(3.9)).

%F a(n) = A001629(n+1) + F(n-1). - _Gary W. Adamson_, Jul 27 2007

%F a(n) = (((n-4)*n-6)*a(n-2) + ((n-5)*n-11)*a(n-1)) / ((n-6)*n-1). - _Jean-François Alcover_, Mar 11 2014

%p a:= n-> (Matrix([[1,-1,2,-4]]). Matrix(4, (i,j)-> if (i=j-1) then 1 elif j=1 then [2,1,-2,-1][i] else 0 fi)^(n))[1,1] ; seq (a(n), n=0..33); # _Alois P. Heinz_, Aug 05 2008

%t a[0] = a[1] = 1; a[n_] := a[n] = (((n-4)*n-6)*a[n-2] + ((n-5)*n-11)*a[n-1]) / ((n-6)*n-1); Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Mar 11 2014 *)

%t CoefficientList[Series[(1 - x + x^3)/(1 - x - x^2)^2, {x, 0, 50}], x] (* _Vincenzo Librandi_, Mar 13 2014 *)

%t LinearRecurrence[{2,1,-2,-1},{1,1,3,6},60] (* _Harvey P. Dale_, Jul 13 2022 *)

%Y Cf. A000045, A001629, A046854, A055245.

%K nonn,easy

%O 0,3

%A _Wolfdieter Lang_, May 10 2000