Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Jun 18 2022 09:49:11
%S 1,1,6,174,22560,12514320,28836612000,270345669985440,
%T 10160459763342013440
%N Number of invertible n X n matrices with entries equal to 0 or 1.
%C All eigenvalues are nonzero.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/NonsingularMatrix.html">Nonsingular Matrix.</a>
%H Chai Wah Wu, <a href="https://arxiv.org/abs/1805.07431">Can machine learning identify interesting mathematics? An exploration using empirically observed laws</a>, arXiv:1805.07431 [cs.LG], 2018.
%H Miodrag Zivkovic, <a href="https://arxiv.org/abs/math/0511636">Classification of small (0,1) matrices</a>, arXiv:math/0511636 [math.CO], 2005; Linear Algebra and its Applications, 414 (2006), 310-346.
%H Miodrag Zivkovic, <a href="http://www.matf.bg.ac.rs/~ezivkovm/01matrices.htm">Classification of (0,1) matrices of order not exceeding 8</a>.
%H <a href="/index/Mat#binmat">Index entries for sequences related to binary matrices</a>
%F For an asymptotic estimate see A046747. A002884 is a lower bound. A002416 is an upper bound.
%F a(n) = n! * A088389(n). - _Gerald McGarvey_, Oct 20 2007
%e For n=2 the 6 matrices are {{{0, 1}, {1, 0}}, {{0, 1}, {1, 1}}, {{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}, {{1, 1}, {1, 0}}}.
%o (PARI) a(n)=sum(t=0,2^n^2-1,!!matdet(matrix(n,n,i,j,(t>>(i*n+j-n-1))%2))) \\ _Charles R Greathouse IV_, Feb 09 2016
%o (Python)
%o from itertools import product
%o from sympy import Matrix
%o def A055165(n): return sum(1 for s in product([0,1],repeat=n**2) if Matrix(n,n,s).det() != 0) # _Chai Wah Wu_, Sep 24 2021
%Y Cf. A056990, A056989, A046747, A055165, A002416, A003024 (positive definite matrices).
%Y A046747(n) + a(n) = 2^(n^2) = total number of n X n (0, 1) matrices = sequence A002416.
%Y Main diagonal of A064230.
%K nonn,nice,hard,more
%O 0,3
%A Ulrich Hermisson (uhermiss(AT)server1.rz.uni-leipzig.de), Jun 18 2000
%E More terms from Miodrag Zivkovic (ezivkovm(AT)matf.bg.ac.rs), Feb 28 2006
%E Description improved by _Jeffrey Shallit_, Feb 17 2016
%E a(0)=1 prepended by _Alois P. Heinz_, Jun 18 2022