Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 13 2015 00:50:15
%S 1,0,0,0,24,528,4648,26224,112666,401424,1246000,3476368,8905432,
%T 21266208,47875272,102482048,210000931,414160240,789572072,1460372624,
%U 2628456428,4615495808,7924479264,13328517504,21997272036,35674700896,56926058920,89477437120
%N Number of nonnegative integer 4 X 4 matrices with no zero rows or columns and with sum of elements equal to n.
%H T. D. Noe, <a href="/A055007/b055007.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
%F Number of nonnegative integer p X q matrices with no zero rows or columns and with sum of elements equal to n is Sum_{k=0...q} (-1)^k*C(q, k)*m(p, q-k, n) where m(p, q, n)=Sum_{k=0..p} (-1)^k*C(p, k)*C((p-k)*q+n-1, n).
%F For p = q = 4 we get a(n) = (1/15!)*(n^15 + 120*n^14 + 6580*n^13 + 218400*n^12 + 4637542*n^11 + 61261200*n^10 + 423591740*n^9 + 164392800*n^8 - 17247717487*n^7 - 47940252360*n^6 + 346941238280*n^5 + 557885764800*n^4 - 4897231459056*n^3 + 8643549191040*n^2 - 5894285241600*n + 1307674368000).
%F G.f.: -(16*x^15 -192*x^14 +1040*x^13 -3356*x^12 +7200*x^11 -10952*x^10 +12544*x^9 -11712*x^8 +9664*x^7 -7088*x^6 +4224*x^5 -1844*x^4 +560*x^3 -120*x^2 +16*x -1) / (x -1)^16. - _Colin Barker_, Jul 11 2013
%Y Cf. A054688, A054974, A054975, A052366.
%K easy,nonn
%O 0,5
%A _Vladeta Jovovic_, May 30 2000
%E More terms from _James A. Sellers_, May 31 2000