login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of unlabeled semi-strong digraphs on n nodes with pairwise different components.
4

%I #25 Jan 14 2022 23:19:34

%S 1,1,6,88,5136,1052154,706474926,1581054875274,12140605885784816,

%T 328173091958855376334,31831409045512513121561226,

%U 11234306828778006073392046869300,14576263867446651299709243211339018934,70075728362101598938266196294267261948879446

%N Number of unlabeled semi-strong digraphs on n nodes with pairwise different components.

%C Weigh transform of A035512. - _Andrew Howroyd_, Sep 10 2018

%C A digraph is semi-strong if all its weakly connected components are strongly connected. - _Andrew Howroyd_, Jan 14 2022

%H Andrew Howroyd, <a href="/A054952/b054952.txt">Table of n, a(n) for n = 1..50</a>

%H V. A. Liskovets, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LISK/Derseq.html">Some easily derivable sequences</a>, J. Integer Sequences, 3 (2000), #00.2.2.

%F G.f.: -1 + Product_{n > 0} (1 + x^n)^A035512(n). - _Andrew Howroyd_, Sep 10 2018

%t m = 15;

%t A035512 = Cases[Import["https://oeis.org/A035512/b035512.txt", "Table"], {_, _}][[All, 2]];

%t gf = -1 + Product[(1 + x^n)^A035512[[n + 1]], {n, 1, m}];

%t CoefficientList[gf + O[x]^m , x] // Rest (* _Jean-François Alcover_, Aug 26 2019, after _Andrew Howroyd_ *)

%Y Cf. A035512, A054951, A054953, A054954.

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_, May 24 2000

%E More terms from _Vladeta Jovovic_, Mar 11 2003

%E a(12)-a(14) from _Andrew Howroyd_, Sep 10 2018