login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of strongly connected labeled tournaments on n nodes.
6

%I #47 Jul 25 2024 10:47:37

%S 1,0,2,24,544,22320,1677488,236522496,64026088576,33832910196480,

%T 35262092417856512,72926863133112198144,300318571786159783496704,

%U 2467430973323656141183549440,40490606137578335674252914280448

%N Number of strongly connected labeled tournaments on n nodes.

%C For n>=3, a(n) is equal to the number of minimal idempotent generating sets of the semigroup of all singular mappings on {1,2,...,n}. (In the reference below, Howie gave a correspondence between such generating sets and strongly connected labeled tournaments, but stated an incorrect formula for a(n).) - _James East_, Jan 08 2013

%D Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.

%H N. J. A. Sloane, <a href="/A054946/b054946.txt">Table of n, a(n) for n = 1..80</a> [Shortened file because terms grow rapidly: see Sloane link below for additional terms]

%H James East and Robert D. Gray, <a href="http://arxiv.org/abs/1404.2359">Idempotent generators in finite partition monoids and related semigroups</a>, arXiv preprint arXiv:1404.2359, 2014

%H J. M. Howie, <a href="http://dx.doi.org/10.1017/S0308210500010647">Idempotent generators in finite full transformation semigroups</a>, Proc. Roy. Soc. Edinburgh Sect. A, 81 (1978), no. 3-4, 317-323.

%H Qipeng Kuang, Ondřej Kuželka, Yuanhong Wang, and Yuyi Wang, <a href="https://arxiv.org/abs/2407.11877">Bridging Weighted First Order Model Counting and Graph Polynomials</a>, arXiv:2407.11877 [cs.LO], 2024. See p. 33.

%H Valery A. Liskovets, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LISK/Derseq.html">Some easily derivable sequences</a>, J. Integer Sequences, 3 (2000), #00.2.2.

%H Thierry Monteil and Khaydar Nurligareev, <a href="https://arxiv.org/abs/2401.00818">Asymptotic probability for connectedness</a>, arXiv:2401.00818 [math.CO], 2024. See p. 12.

%H N. J. A. Sloane, <a href="/A054946/a054946.txt">Table of n, a(n) for n = 1..100</a>

%H E. M. Wright, <a href="http://dx.doi.org/10.1017/S0017089500000914">The number of irreducible tournaments</a>, Glasgow Math. J., 11 (1970), 97-101.

%F Let F(n) = 2^(n*(n-1)/2). Then a(n) is defined by the recurrence a(1)=1, F(n) = a(n) + Sum_{s=1..n-1} binomial(n,s)*a(s)*F(n-s). [Wright]

%F E.g.f.: 1-1/(1+f(x)) where f(x) = Sum_{m>=1} 2^(m(m-1)/2) x^m / m!.

%F Wright also gives an asymptotic expansion for a(n).

%e For n=3, there are two minimal idempotent generating sets for the semigroup of singular mappings on {1,2,3}. Writing (a,b,c) to indicate the map for which 1->a, etc, the relevant generating sets are: {(1,1,3),(1,2,2),(3,2,3)} and {(2,2,3),(1,3,3),(1,2,1)}.

%p with(powseries): powcreate(t(n)=2^(n*(n-1)/2)/n!): s := evalpow(1-1/t): a := tpsform(s, x, 21): for n from 0 to 20 do printf(`%d,`,n!*coeff(a,x,n)) od:

%p f:=array(0..500); F:=array(0..500); M:=100; f[1]:=1; F[1]:=1; lprint(1,f[1]); for n from 2 to M do F[n]:=2^(n*(n-1)/2); f[n]:=F[n]-add( binomial(n,s)*f[s]*F[n-s], s=1..n-1); lprint(n,f[n]); od:

%t F[n_] := 2^(n*(n - 1)/2);

%t a[1] = 1; a[n_] := a[n] = F[n] - Sum[Binomial[n, s]*a[s]*F[n-s], {s, 1, n-1 }];

%t Array[a, 15] (* _Jean-François Alcover_, Nov 13 2017, from first formula *)

%o (PARI) seq(n)={my(a=vector(n)); for(n=1, n, a[n] = 2^(n*(n-1)/2) - sum(k=1, n-1, binomial(n,k)*2^((n-k)*(n-k-1)/2)*a[k])); a} \\ _Andrew Howroyd_, Jan 10 2022

%Y Cf. A000568 (unlabeled tournaments), A051337 (strongly connected unlabeled tournaments).

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_, May 24 2000